## Unit 17: Transition Metals

## Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.


Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs


## Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

## Quizlet

Quizlet Classes
Flashcard Based
Games
Tests \& Quizzes
Keyword Spell Checker

## Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the 3 Wave Process when completing these revision packs.


1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

| $\mathbf{1}$ | $\mathbf{1}$ | This question is about compounds containing ethanedioate ions. |
| :--- | :--- | :--- |


| 1 | 1 |
| :--- | :--- |

A white solid is a mixture of sodium ethanedioate $\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$, ethanedioic acid dihydrate $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ and an inert solid. A volumetric flask contained 1.90 g of this solid mixture in $250 \mathrm{~cm}^{3}$ of aqueous solution.

Two different titrations were carried out using this solution.
In the first titration $25.0 \mathrm{~cm}^{3}$ of the solution were added to an excess of sulfuric acid in a conical flask. The flask and contents were heated to $60^{\circ} \mathrm{C}$ and then titrated with a $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of potassium manganate(VII). When $26.50 \mathrm{~cm}^{3}$ of potassium manganate(VII) had been added the solution changed colour.

The equation for this reaction is

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}
$$

In the second titration $25.0 \mathrm{~cm}^{3}$ of the solution were titrated with a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide using phenolphthalein as an indicator. The indicator changed colour after the addition of $10.45 \mathrm{~cm}^{3}$ of sodium hydroxide solution.

The equation for this reaction is

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the percentage by mass of sodium ethanedioate in the white solid.
Give your answer to the appropriate number of significant figures. Show your working.

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ Ethanedioate ions react with aqueous iron(III) ions in a ligand substitution |
| :--- | :--- | :--- | :--- | reaction.

Write an equation for this reaction.
Suggest why the value of the enthalpy change for this reaction is close to zero.
[2 marks]
$\qquad$
$\qquad$
$\qquad$

| $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | | $\mathbf{3}$ | Draw the displayed formula of the iron complex produced in the reaction in |
| :--- | :--- |
| Question 11.2 |  |

Indicate the value of the $\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ bond angle.
State the type of isomerism shown by the iron complex.

Bond angle
Type of isomerism $\qquad$

| 1 | 1 | 4 |
| :--- | :--- | :--- |
| 4 | Ethanedioate ions are poisonous because they react with iron ions in the body. |  | Ethanedioate ions are present in foods such as broccoli and spinach.

Suggest one reason why people who eat these foods do not suffer from poisoning.
$\qquad$
$\qquad$

END OF QUESTIONS

| Question | Answers | Mark | Additional Comments/Guidance |
| :---: | :---: | :---: | :---: |
| 11.1 | Moles $\mathrm{Mn} \mathrm{O}_{4}^{-} \frac{26.50 \times 0.02}{1000}=5.30 \times 10^{-4}$ <br> Moles in $25 \mathrm{~cm}^{3}$ sample / pipette $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ( from acid and salt) $=5.30 \times 10^{-4} \underline{\times 5 / 2}=\left(1.325 \times 10^{-3}\right)$ $\text { Moles } \mathrm{NaOH}=\frac{10.45 \times 0.1}{1000}\left(=1.045 \times 10^{-3}\right)$ <br> So moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ from acid in $25 \mathrm{~cm}^{3}$ sample / pipette $=1.045 \times 10^{-3} \div 2=5.225 \times 10^{-4}$ <br> Hence moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in sodium ethanedioate in $25 \mathrm{~cm}^{3}$ $=1.325 \times 10^{-3}-5.225 \times 10^{-4} \quad\left(=8.025 \times 10^{-4}\right)$ <br> So moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in sodium ethanedioate in original sample $=8.025 \times 10^{-4} \underline{\mathbf{x} 10} \quad\left(=8.025 \times 10^{-3}\right)$ <br> Mass $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=8.025 \times 10^{-3} \mathbf{x 1 3 4 ( . 0 )}=1.075(35) \mathrm{g}$ <br> So \% sodium ethanedioate in original sample $\frac{1.075(35)}{1.90} \times 100=56.6 \% \text { to } 3 \text { sig fig }$ | 1 1 1 1 1 1 1 1 1 1 1 | The first CE is penalised by 2 marks; further errors are penalised by one mark each $M 2=M 1 \times 5 / 2$ $M 4=M 3 \div 2$ <br> M5 = M2 - M4 (do not allow if negative and do not allow $=\mathrm{M} 4-$ M2) <br> If no subtraction, max $=5$ (M1, M2, M3, M4 and M6) <br> If incorrect subtraction, max $=\mathbf{6}$ (M1, M2, M3, M4, M6 and M7) $\mathrm{M} 6=\mathrm{M} 5 \times 10$ <br> (M6 can be scored by multiplying M2 and M4 by 10 before subtraction (giving $1.325 \times 10^{-2}-5.225 \times 10^{-3}=8.025 \times 10^{-3}$ ) $\text { M7 = M6 x } 134$ $\mathrm{M} 8=(\mathrm{M} 7 / 1.90) \times 100 \quad \text { Allow } 56.5-56.8 \%$ |


| Question | Answers | Mark | Additional Comments/Guidance |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 1 . 2}$ |  | $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O}$ |  |
| There are $\underline{6} \mathrm{Fe}-\mathrm{O}$ bonds broken and then made / same <br> number and type of bond being broken and made. | 1 |  |  |


| 11.3 |  <br> $90^{\circ}$ or $180^{\circ}$ <br> optical | 1 | Ignore all charges even if wrong <br> Ignore absence of square brackets <br> Candidates do not need to show 3D shape |
| :---: | :---: | :---: | :---: |


| 11.4 | The ethanedioic acid is only present in small quantities/low <br> concentration in these foods. | 1 |  |
| :---: | :--- | :---: | :---: |
| Total |  | $\mathbf{1 4}$ |  |


| 0 | 9 |
| :--- | :--- |$\quad$ This question is about vanadium compounds and ions.


| 0 | 9 | 1 |
| :--- | :--- | :--- |
| 1 |  |  | $\mathrm{VO}^{2+}$ in aqueous solution and no further.

Explain your answer.

## Table 4

| Electrode half-equation | $E^{\ominus} / \mathbf{V}$ |
| :---: | :---: |
| $\mathrm{VO}_{2}{ }^{+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{VO}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ | +1.00 |
| $\mathrm{VO}^{2+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{V}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ | +0.34 |
| $\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$ | +1.36 |
| $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$ | +0.77 |
| $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$ | -0.76 |

[2 marks]
Reagent
Explanation
$\qquad$
$\qquad$

| $\mathbf{0}$ | $\mathbf{9}$. | $\mathbf{2}$ Give the oxidation state of vanadium in $\left[\mathrm{VO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ |
| :--- | :--- | :--- |


Draw the structure of the other isomer and state the type of isomerism.



Type of isomerism $\qquad$

Give an equation for the reaction.

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{5}$ Vanadium $(\mathrm{V})$ oxide is the catalyst used in the manufacture of sulfur trioxide. |
| :--- | :--- | :--- | :--- |

Give two equations to show how the catalyst is used and regenerated.
$\qquad$

| Question | Answers | Additional Comments/Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 09.1 | $\begin{aligned} & \mathrm{Fe}^{2+} \\ & E^{\ominus} \mathrm{VO}_{2}^{+}\left(/ \mathrm{VO}^{2+}\right)>E^{\ominus} \mathrm{Fe}^{3+}\left(/ \mathrm{Fe}^{2+}\right)>E^{\ominus} \mathrm{VO}^{2+}\left(/ \mathrm{V}^{3+}\right) \end{aligned}$ | Accept any Fe (II) compound - correct formula or name <br> If calculations of EMF are provided producing EMFs $=0.23(\mathrm{~V})$ and $-0.43(\mathrm{~V})$, with a comment, allow M2 <br> allow $\underline{E}^{\ominus} \mathrm{Fe}^{3+}\left(/ \mathrm{Fe}^{2+}\right)$ value of +0.77 is between the $E^{\ominus}$ values for the electrode half-equations containing the V species or wtte | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| 09.2 | (+) 4 | IV or four | 1 |
| 09.3 |  <br> Cis/trans | Ignore absence of charge <br> Wedges, dotted lines and [ ] not required <br> Do not penalise bond from H to V (in water ligands) <br> allow $\mathrm{E} / \mathrm{Z}$, geometric and stereo(isomerism) | 1 <br> 1 |
| 09.4 | $2 \mathrm{NH}_{4} \mathrm{VO}_{3} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{3}$ | Accept multiples Ignore state symbols | 1 |
| 09.5 | $\begin{aligned} & \mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3} \\ & \mathrm{~V}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5} \end{aligned}$ | Both equations needed for 1 mark in this order Allow multiples | 1 |
| Total |  |  | 7 |


| $\mathbf{0}$ | $\mathbf{7}$ | Copper(II) complexes are coloured. |
| :--- | :--- | :--- |

The colour is caused by the d electrons of copper moving from their ground state to an excited state.

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{1}$ Explain why aqueous solutions containing $\left[\mathrm{CuCl}_{4}\right]^{2-}$ ions are yellow. ${ }^{2}$. |
| :--- | :--- | :--- |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| $\mathbf{0}$ | $\mathbf{7} .2$ | $\mathbf{2}$ When a d electron moves from the ground state to the excited state in a |
| :--- | :--- | :--- | copper complex, the energy change is $3.98 \times 10^{-19} \mathrm{~J}$

The Planck constant, $h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Calculate the frequency, in $\mathrm{s}^{-1}$, of the light absorbed.
$\qquad$

| 0 | 7 | 3 | State three ways in which a transition metal complex can be changed to alter its |
| :--- | :--- | :--- | :--- | colour.

1

2

3 $\qquad$

Question 7 continues on the next page


| 0 | 7 | 4 | Name the shape of the $\left[\mathrm{CuCl}_{4}\right]^{2-}$ ion. |
| :--- | :--- | :--- | :--- |

$\qquad$


| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{6}$ | State the colour of the solution containing the complex ion $\mathbf{Q}$. |
| :--- | :--- | :--- | :--- |

Give an ionic equation for the conversion of $\left[\mathrm{CuCl}_{4}\right]^{2-}$ to $\mathbf{Q}$.

Colour
Equation

| 0 | $\mathbf{7}$ | $\mathbf{7}$ | Identify complex ion $\mathbf{R}$. |
| :--- | :--- | :--- | :--- |


| Question | Answers | Additional Comments/Guidelines | Mark |
| :---: | :---: | :---: | :---: |
| 07.1 | (visible/white) light absorbed (and (d) electrons excited) only yellow light transmitted/reflected | do not accept absorbs yellow light do not accept emitted reference to light required in M1 or M2 | $\begin{gathered} 1 \\ 1 \\ \text { AO2 } \end{gathered}$ |
| Question | Answers | Additional Comments/Guidelines | Mark |
| 07.2 | $\begin{aligned} & (\Delta) E=h v \text { or } \frac{h c}{\lambda} \\ & 6(.00) \times 10^{14}\left(\mathrm{~s}^{-1}\right) \end{aligned}$ | allow with or without numbers | $\begin{gathered} 1 \\ 1 \\ \text { AO2 } \end{gathered}$ |
| Question | Answers | Additional Comments/Guidelines | Mark |
| 07.3 | (change in) oxidation state (of metal) (change of) ligand (change in) co-ordination number | allow (change the) number of ligands | $\begin{gathered} 1 \\ 1 \\ 1 \\ \text { AO1 } \end{gathered}$ |


| Question | Answers | Additional Comments/Guidelines | Mark |
| :---: | :---: | :---: | :---: |
| 07.4 | tetrahedral | allow tetrahedron | $\begin{gathered} 1 \\ \text { AO3 } \end{gathered}$ |
| Question | Answers | Additional Comments/Guidelines | Mark |
| 07.5 | $\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-}$ |  | $\stackrel{1}{\mathrm{AO} 3}$ |
| Question | Answers | Additional Comments/Guidelines | Mark |
| 07.6 | deep blue $\left[\mathrm{CuCl}_{4}\right]^{2-}+4 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{Cl}^{-}$ | allow dark blue | $\begin{gathered} 1 \\ 1 \\ \text { AO3 } \end{gathered}$ |
| Question | Answers | Additional Comments/Guidelines | Mark |
| 07.7 | $\left[\mathrm{Cu}(\text { EDTA) }]^{2-}\right.$ | ignore absence of brackets | $\stackrel{1}{\text { AO3 }}$ |


| $\mathbf{0}$ | $\mathbf{1} .4$ | $\mathbf{4}$ Figure 1 shows the $25.0 \mathrm{~cm}^{3}$ pipette used to measure the |
| :--- | :--- | :--- | sodium ethanedioate solution.

Figure 1


On Figure 1, draw the meniscus of the solution when the pipette is ready to transfer $25.0 \mathrm{~cm}^{3}$ of the sodium ethanedioate solution.

| 0 | 1 | 5 | Potassium manganate(VII) is oxidising and harmful. |
| :--- | :--- | :--- | :--- |

Sodium ethanedioate is toxic.
Suggest safety precautions, other than eye protection, that should be taken when:

- filling the burette with potassium manganate(VII) solution
- dissolving the solid sodium ethanedioate in water.

Filling the burette $\qquad$
$\qquad$
Dissolving the solid $\qquad$
$\qquad$

| 0 | 1 | 6 | State the colour change seen at the end point of each titration. |
| :--- | :--- | :--- | :--- |

$\qquad$

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{7}$ | Figure 2 shows the burette containing potassium manganate(VII) solution. |
| :--- | :--- | :--- | :--- |

## Figure 2



Give two practical steps needed before recording the initial burette reading.

1

2 $\qquad$

Question 1 continues on the next page

| $\mathbf{0}$ | 1 | $\mathbf{8}$ | $\mathbf{W}$ When $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ is added to a solution containing $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ions, a reaction |
| :--- | :--- | :--- | :--- | occurs in which all six water ligands are replaced by ethanedioate ions.

Explain why the replacement of the water ligands by ethanedioate ions is favourable. In your answer refer to:

- the enthalpy and entropy changes for the reaction
- how the enthalpy and entropy changes influence the free-energy change for the reaction.
$\qquad$


## Turn over for the next question

| Question | Answers | Additional comments/Guidelines | Mark |  |
| :--- | :---: | :---: | :--- | :--- |
| 1.4 |  | Graduation mark | Meniscus curved with the bottom of the curve on <br> the horizontal line | 1 |
|  |  |  |  |  |


| Question | Answers | Additional comments/Guidelines | Mark |
| :--- | :--- | :--- | :--- |
| 1.5 | (burette) fill below/at eye level <br> (solution) wear gloves | ignore make sure tap closed / funnel / gloves <br> allow wash/rinse hands after any spillage <br> not fume cupboard <br> ignore lab coat / stir carefully | 1 |


| Question | Answers | Additional comments/Guidelines | Mark |
| :--- | :--- | :--- | :---: |
| 1.6 | colourless to pink/pale purple | not just purple <br> not 'clear' for 'colourless' | 1 |


| Question | Answers | Additional comments/Guidelines | Mark |
| :--- | :--- | :--- | :--- |
| 1.7 | remove funnel |  | 1 |
|  | ensure jet is filled / no (air) bubbles | allow open tap to fill space below tap | 1 |


| Question |  | Answers | Additional comments/Guidelines | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1.8 | This question is marked using Levels of Response. Refer to the Mark Scheme Instructions for Examiners for guidance. |  | Stage $1-\Delta H$ <br> 1a $\Delta H$ negligible <br> 1b make \& break same number of bonds <br> 1c make \& break same type of bonds / bonds have similar enthalpies <br> Stage 2- $\Delta$ S <br> 2a increase in entropy <br> $2 \mathrm{~b} \quad$ increase in particles in solution / from 4 to 7 particles (ecf from incorrect equation showing increase in no. of moles) <br> Stage 3- $\Delta \mathrm{G}$ <br> 3a $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ <br> 3b $\quad \Delta$ Gegative (for forward reaction) <br> 3c correct discussion of why $\Delta G$ is negative based on $\Delta \mathrm{H}$ and $\mathrm{T} \Delta \mathrm{S}$ | 6 |
|  | Level 3 5-6 marks | All stages are covered and each stage is generally correct and virtually complete. <br> Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3 <br> Covers at least 2 point for stage 1,1 for stage 2 and 2 for stage 3. <br> If given equation must show correct stoichiometry for six marks |  |  |
|  | Level 2 3-4 marks | All stages are covered but stage(s) may be incomplete or may contain inaccuracies <br> OR two stages are covered and are generally correct and virtually complete. <br> Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3. |  |  |
|  | Level 1 1-2 marks | Two stages are covered but stage(s) may be incomplete or may contain inaccuracies <br> OR only one stage is covered but is generally correct and virtually complete. <br> Answer includes isolated statements but these are not presented in a logical order. |  |  |
|  | 0 mark | Insufficient correct chemistry to gain a mark. |  |  |

