A' Level Chemistry Year 2

Unit 17: Transition Metals

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms Take Time to Answer Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

This question is about compounds containing ethanedioate ions.

A white solid is a mixture of sodium ethanedioate $(Na_2C_2O_4)$, ethanedioic acid dihydrate $(H_2C_2O_4.2H_2O)$ and an inert solid. A volumetric flask contained 1.90 g of this solid mixture in 250 cm³ of aqueous solution.

Two different titrations were carried out using this solution.

In the first titration 25.0 cm³ of the solution were added to an excess of sulfuric acid in a conical flask. The flask and contents were heated to 60 °C and then titrated with a 0.0200 mol dm⁻³ solution of potassium manganate(VII). When 26.50 cm³ of potassium manganate(VII) had been added the solution changed colour.

The equation for this reaction is

 $2MnO_4^{-} + 5C_2O_4^{2^-} + 16H^+ \rightarrow 2Mn^{2^+} + 8H_2O + 10CO_2$

In the second titration 25.0 cm³ of the solution were titrated with a $0.100 \text{ mol dm}^{-3}$ solution of sodium hydroxide using phenolphthalein as an indicator. The indicator changed colour after the addition of 10.45 cm³ of sodium hydroxide solution.

The equation for this reaction is

$$H_2C_2O_4 + 2OH^- \rightarrow C_2O_4^{2-} + 2H_2O$$

Calculate the percentage by mass of sodium ethanedioate in the white solid.

Give your answer to the appropriate number of significant figures. Show your working.

[8 marks]

1

1

1

1

1

Percentage by mass of sodium ethanedioate

1 1 . 2	Ethanedioate ions react with aqueous iron(III) ions in a ligand substitution reaction.
	Write an equation for this reaction.
	Suggest why the value of the enthalpy change for this reaction is close to zero. [2 marks]
-	
11.3	Draw the displayed formula of the iron complex produced in the reaction in Question 11.2
	Indicate the value of the O—Fe—O bond angle.
	State the type of isomerism shown by the iron complex. [3 marks]
	Bond angle
	Type of isomerism
1 1 . 4	Ethanedioate ions are poisonous because they react with iron ions in the body. Ethanedioate ions are present in foods such as broccoli and spinach.
	Suggest one reason why people who eat these foods do not suffer from poisoning.
	[1 mark]
	END OF QUESTIONS
	Turn over ►

Question	Answers	Mark	Additional Comments/Guidance
	Moles Mn O ₄ ⁻ $\frac{26.50 \times 0.02}{1000} = 5.30 \times 10^{-4}$	1	The first CE is penalised by 2 marks; further errors are penalised by one mark each
	Moles in 25cm ³ sample / pipette $C_2O_4^{2-}$ (from acid and salt) = 5.30 x 10 ⁻⁴ <u>x 5/2</u> = (1.325 x 10 ⁻³)	1	M2 = M1 x 5/2
	Moles NaOH = $\frac{10.45 \times 0.1}{1000} (= 1.045 \times 10^{-3})$	1	
	So moles $C_2 O_4^{2-}$ from acid in 25cm ³ sample / pipette = 1.045 x 10 ⁻³ $\div 2$ = 5.225 x 10 ⁻⁴	1	M4 = M3 ÷ 2
11.1	Hence moles $C_2 O_4^{2-}$ in sodium ethanedioate in 25 cm ³ = 1.325 x 10 ⁻³ - 5.225 x 10 ⁻⁴ (= 8.025x 10 ⁻⁴)	1	M5 = M2 – M4 (do not allow if negative and do not allow = M4 M2) If no subtraction, max = 5 (M1, M2, M3, M4 and M6) If incorrect subtraction, max = 6 (M1, M2, M3, M4, M6 and M7)
	So moles $C_2O_4^{2-}$ in sodium ethanedioate in original sample = 8.025x 10^{-4} <u>x 10</u> (= 8.025x 10^{-3}) Mass Na ₂ C ₂ O ₄ = 8.025x 10^{-3} <u>x 134(.0)</u> = 1.075(35) g	1	M6 = M5 x 10 (M6 can be scored by multiplying M2 <u>and</u> M4 by 10 before subtraction (giving $1.325 \times 10^{-2} - 5.225 \times 10^{-3} = 8.025 \times 10^{-3}$) M7 = M6 x 134
	So % sodium ethanedioate in original sample $\frac{1.075(35)}{1.90} \times 100 = 56.6 \% \text{ to 3 sig fig}$	1	M8 = (M7/1.90)x100 Allow 56.5 – 56.8%

Question	Answers	Mark	Additional Comments/Guidance
	$[Fe(H_2O)_6]^{3+} + 3C_2O_4^{2-} \rightarrow [Fe(C_2O_4)_3]^{3-} + 6H_2O$	1	
11.2	There are <u>6</u> Fe –O bonds broken and then made / <u>same</u> number and type of bond being broken and made.	1	

11.4	The ethanedioic acid is only present in small quantities/low concentration in these foods.	1	
------	--	---	--

Total	14
-------	----

This question is about vanadium compounds and ions.

Use data from **Table 4** to identify the species that can be used to reduce VO_2^+ ions to VO^{2^+} in aqueous solution and no further. Explain your answer.

Electrode half-equation	<i>Ε</i> ^Θ / V
$VO_2^+(aq) + 2H^+(aq) + e^- \rightarrow VO^{2+}(aq) + H_2O(I)$	+1.00
$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow V^{3+}(aq) + H_2O(I)$	+0.34
$Cl_2(aq) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76

[2 marks]

Reagent

Explanation

0 9. **2** Give the oxidation state of vanadium in $[VO(H_2O)_5]^{2+}$

[1 mark]

Turn over ►

7

Question	Answers	Additional Comments/Guidance	Mark
09.1	Fe^{2+} $E^{\Theta} VO_2^+(/VO^{2+}) > E^{\Theta} Fe^{3+}(/Fe^{2+}) > E^{\Theta} VO^{2+}(/V^{3+})$	Accept any Fe(II) compound – correct formula or name If calculations of EMF are provided producing EMFs = 0.23(V) and -0.43(V), with a comment, allow M2 allow $\underline{E}^{\Theta} \operatorname{Fe}^{3+}$ (/Fe ²⁺) value of +0.77 is between the \overline{E}^{Θ} values for the electrode half-equations containing the V species or wtte	1
09.2	(+) 4	IV or four	1
09.3	$\begin{bmatrix} H_2 O \\ H_2 O \\ C \\ H_2 O \\ H_2 O \end{bmatrix}^+$ Cis/trans	Ignore absence of charge Wedges, dotted lines and [] not required Do not penalise bond from H to V (in water ligands) allow E/Z, geometric and stereo(isomerism)	1
09.4	$2 \text{ NH}_4 \text{VO}_3 \rightarrow \text{V}_2 \text{O}_5 + \text{H}_2 \text{O} + 2 \text{NH}_3$	Accept multiples Ignore state symbols	1
09.5	$V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$ $V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$	Both equations needed for 1 mark in this order Allow multiples	1
Total			7

0 7	Copper(II) complexes are coloured. The colour is caused by the d electrons of copper moving from their ground an excited state.	state to
0 7.1	Explain why aqueous solutions containing [CuCl ₄] ²⁻ ions are yellow.	[2 marks]
0 7.2	When a d electron moves from the ground state to the excited state in a copper complex, the energy change is $3.98 \times 10^{-19} \text{ J}$	
	The Planck constant, $h = 6.63 \times 10^{-34} \text{ J s}$	
	Calculate the frequency, in s^{-1} , of the light absorbed.	[2 marks]
	Frequency	S ⁻¹
0 7.3	State three ways in which a transition metal complex can be changed to alte	er its
	colour.	[3 marks]
	1	
	2	
	3	
	Question 7 continues on the next page	

Turn over ►

Do not write outside the box

	Consider the following reaction scheme in which P , Q and R are different complex ions of copper.	Do not write outside the box
	$\begin{bmatrix} CuCl_4 \end{bmatrix}^{2-} (aq) \xrightarrow{excess water} P (aq) \\ excess \\ aqueous \\ ammonia \\ \end{bmatrix} Na_4 EDTA (aq)$	
	\mathbf{Q} (aq) \mathbf{R} (aq)	
0 7.4	Name the shape of the [CuCl ₄] ^{2–} ion. [1 mark]	
0 7.5	Give an ionic equation for the conversion of [CuCl ₄] ²⁻ to complex ion P . [1 mark]	
07.6	State the colour of the solution containing the complex ion ${\tt Q}.$ Give an ionic equation for the conversion of $[{\tt CuCl}_4]^{2-}$ to ${\tt Q}.$ [2 marks]	
	Colour	
07.7	Identify complex ion R. [1 mark]	12

onal Comments/Guidelines Mark
absorbs yellow light 1 emitted 1 AO2
cept

Question	Answers	Additional Comments/Guidelines	Mark
07.2	$(\Delta)E = hv \text{ or } \frac{hc}{\lambda}$ 6(.00) × 10 ¹⁴ (s ⁻¹)	allow with or without numbers	1 1 AO2

Question	Answers	Additional Comments/Guidelines	Mark
07.3	(change in) oxidation state (of metal) (change of) ligand (change in) co-ordination number	allow (change the) number of ligands	1 1 1 AO1

Question	Answers	Additional Comments/Guidelines	Mark
07.4	tetrahedral	allow tetrahedron	1 AO3

Question	Answers	Additional Comments/Guidelines	Mark
07.5	$[CuCl_4]^{2-}$ + 6H ₂ O \rightarrow $[Cu(H_2O)_6]^{2+}$ + 4Cl ⁻		1 AO3

Question	Answers	Additional Comments/Guidelines	Mark
07.6	deep blue [CuCl ₄] ^{2–} + 4NH ₃ + 2H ₂ O \rightarrow [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ + 4Cl [–]	allow dark blue	1 1 AO3

Question	Answers	Additional Comments/Guidelines	Mark
07.7	[Cu(EDTA)] ^{2_}	ignore absence of brackets	1 AO3

0 1.4	Figure 1 shows the 25.0 cm ³ pipette used to measure the sodium ethanedioate solution.	Do not write outside the box
	Figure 1	
	Graduation mark	
	On Figure 1 , draw the meniscus of the solution when the pipette is ready to transfer 25.0 cm ³ of the sodium ethanedioate solution. [1 mark]	
0 1.5	Potassium manganate(VII) is oxidising and harmful. Sodium ethanedioate is toxic.	
	 Suggest safety precautions, other than eye protection, that should be taken when: filling the burette with potassium manganate(VII) solution dissolving the solid sodium ethanedioate in water. 	
	Filling the burette	
	Dissolving the solid	
0 1.6	State the colour change seen at the end point of each titration. [1 mark]	

] Do noi
0 1.8	When $Na_2C_2O_4(aq)$ is added to a solution containing $[Fe(H_2O)_6]^{3+}$ ions, a reaction occurs in which all six water ligands are replaced by ethanedioate ions.	outsia
	Explain why the replacement of the water ligands by ethanedioate ions is favourable. In your answer refer to:	
	 the enthalpy and entropy changes for the reaction how the enthalpy and entropy changes influence the free-energy change for the reaction. 	
	[6 marks]	

	Do not write outside the
	box
	20
Turn over for the next question	
Turn over ►	

Question	Answers	Additional comments/Guidelines	Mark
1.4	Graduation mark	Meniscus <u>curved</u> with the bottom of the curve on the horizontal line	1

Question	Answers	Additional comments/Guidelines	Mark
1.5	(burette) fill below/at eye level	ignore make sure tap closed / funnel / gloves	1
	(solution) wear gloves	allow wash/rinse hands after any spillage not fume cupboard ignore lab coat / stir carefully	1

Question	Answers	Additional comments/Guidelines	Mark
1.6	colourless to pink/pale purple	not just purple not 'clear' for 'colourless'	1

Question	Answers	Additional comments/Guidelines	Mark
1.7	remove funnel		1
	ensure jet is filled / no (air) bubbles	allow open tap to fill space below tap	1

Question	Answers	Additional comments/Guidelines	Mark
	 Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3 Covers at least 2 point for stage 1, 1 for stage 2 and 2 for stage 3. If given equation must show correct stoichiometry for six marks All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR two stages are covered and are generally correct and virtually complete. Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3. 	Stage 1 - ΔH 1a ΔH negligible1bmake & break same number of bonds1cmake & break same type of bonds / bonds have similar enthalpiesStage 2 - ΔS 2aincrease in entropy2bincrease in particles in solution / from 4 to 7 particles (ecf from incorrect equation showing increase in no. of moles)Stage 3 - ΔG 3a $\Delta G = \Delta H - T\Delta S$ 3b ΔG negative (for forward reaction)3ccorrect discussion of why ΔG is negative based on ΔH and $T\Delta S$	6