A' Level Chemistry Year 2

Unit 20: NMR

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Verror Year 1A' Level Chemistry : Periodicity / Group II / Group VII

Online Forms *Take Time to Answer*

Take Time to Answer Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

Andy Higham - www.chemistrychimp.jimdofree.com

22

	R has 4 C next to C=O S has 2 C next to C=O	M1	M1 for structural point
	in range δ = 20-50 R has two peaks and S only one peak in this range Or R has more peaks (allowed if no numbers given)		M2 for resulting peak in spectra
10.4	OR		
	S has a $-C(H_2)-C(H_3)$ R does not	M1	
	S has one peak in range δ = 5-40 R does not / lowest peak for S is lower than lowest for R	M2	
	(Both have) three peaks		
r			
	R Both singlets	M1 M2	
	S has triplet and a quartet	IVIZ	
	OR		
	R CH₃/peak at 2.1-2.6 is a singlet	M1	
10.5	S CH ₃ /peak at 0.7-1.2 is a triplet	M2	
	OR		

R CH₂/peak at 2.1-2.6 is a singlet

 \mathbf{S} CH₂/peak at 2.1-2.6 is a quartet

(Both have) two peaks

M1

M2

М3

1 1	There are several isomers with the molecular formula $C_6H_{16}N_2$
1 1.1	One isomer is shown.
	$H_3C - CH_2$ N $- CH_2 - CH_2 - NH_2$
	$H_3C - CH_2$
	Give the number of peaks in the ¹³ C NMR spectrum of this isomer.
	State and explain the splitting pattern of the peak for the hydrogens labelled a in its ¹ H NMR spectrum.
	[3 marks]
	Number of ¹³ C peaks
	Splitting pattern
	Explanation
1 1 2	Draw the structure of the isomer of $C_6H_{16}N_2$ used to make nylon 6,6
	[1 mark]
	Question 11 continues on the next page

IB/M/Jun18/7405/2

11.3	Draw the structure of the isomer of $C_6H_{16}N_2$ that contains two primary amine and has only two peaks in its ¹³ C NMR spectrum.	groups [1 mark]
11.4	Draw the structure of the isomer of $C_6H_{16}N_2$ that contains two tertiary amine and has only two peaks in its ¹³ C NMR spectrum.	groups [1 mark]
Copyright inform For confidentiality separate booklet ra is available for free Permission to repr and AQA will be ha House, Guildford, (END OF QUESTIONS ation purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published ather than including them on the examination paper or support materials. This booklet is published after each examination a download from www.aqa.org.uk after the live examination series.	ed in a series and iccessful ig Hill

Copyright $\textcircled{\sc 0}$ 2018 AQA and its licensors. All rights reserved.

6

28

Question	Answers	Mark	Additional Comments/Guidance		
	4 peaks	1			
11.1	Triplet	1			
	Two H on adjacent C	1	M3 dependent on correct M2		
	()	1	Not -C ₆ H ₁₂ -		
11.2	$H_2N - (CH_2)_6 NH_2$ or H_2N				
11.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			
			Not $-C_2H_4-$		
11.4	1.4 $ \begin{array}{c} H_{3}C \\ H_{3}C \\ H_{3}C \end{array} \\ \begin{array}{c} CH_{2} \\ CH_{3} \\ Or \end{array} \\ \begin{array}{c} N \\ N \\ N \\ N \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $				
Total		6			

06	This question is about isomers.	Do not write outside the box
06.1	Give a reagent and observations for a test-tube reaction to distinguish between 2-methylbutan-1-ol and 2-methylbutan-2-ol.	
	[3 marks]	
	Observation with 2-methylbutan-1-ol	
	Observation with 2-methylbutan-2-ol	
06.2	Compounds A and B both have the molecular formula $C_4H_8Br_2$ A has a singlet, a triplet and a quartet in its ¹ H NMR spectrum. B has only two singlets in its ¹ H NMR spectrum.	
	Draw a structure for each of A and B . [2 marks]	
	A B	
	Question 6 continues on the next page	

			Do not write
06.3	Compounds C and D both have the molecular formula $C_6H_3Br_3$ C has two peaks in its ¹³ C NMR spectrum. D has four peaks in its ¹³ C NMR spectrum.		outside the box
	Draw a structure for each of C and D	[2 marks]	
	C	D	

Question	Answers	Additional Comments/Guidelines	Mark
	 Must be a single test-tube reaction M1 Reagent: acidified potassium dichromate OR K₂Cr₂O₇/H₂SO₄ OR K₂Cr₂O₇/H⁺ OR acidified K₂Cr₂O₇ M21-ol (orange to) green solution OR goes green M32-ol no (visible/observed) reaction/change or NVR or stays orange 	If incorrect reagent then no marks For acidified potassium dichromate: if "dichromate" or "(potassium) dichromate(IV)" or incorrect formula or no acid, penalise M1 but mark on - ignore dichromate described as "yellow" or "red".	1 1 1
06.1	 OR M1 Reagent: acidified potassium manganate(VII) or KMnO₄/H₂SO₄ <i>OR</i> KMnO₄/H⁺ <i>OR</i> acidified KMnO₄ M21-ol (purple to) <u>colourless</u> solution OR goes <u>colourless</u> M32-ol no (visible/observed) reaction/change or stays purple 	For acidified potassium manganate(VII): If "manganate" or "(potassium manganate(IV)" or incorrect formula or no acid, penalise M1 but mark on Credit alkaline / neutral KMnO ₄ for possible full marks but M2 gives <u>brown precipitate</u> or solution goes <u>green</u>	

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/2 – JUNE 2019

	С	D	Allow Kekulé structures	
06.3	Br Br	Br Br Br	Penalise missing aromatic ring each time	2

0 7	Isomers X and Y have the molecular formula C_5H_8O	Do not write outside the box
	Isomer X Isomer Y	
0 7.1	Give the IUPAC name for isomer X. [1 mark]	
07.2	Explain how and why isomers X and Y can be distinguished by comparing each of their boiling points ' ³ C NMR spectra infrared spectra. Use data from Tables A and C in the Data Booklet in your answer. [6 marks] [6 marks] [] [] [] [] [] [] [] [] [] [] [] [] []	

Question		Answers	Additional Comments/Guidelines	Ma rk
G 07.1	Cyclopentar	none	Allow cyclopentan -1-one but no other numbers Ignore spaces, commas and hyphens	1
	This questic Scheme Ins	on is marked using Levels of Response. Refer to the Mark tructions for Examiners for guidance. All stages are covered and each stage is generally	Indicative Chemistry content Stage 1: boiling points 1a) Y has a higher bp	
	5-6 marks	correct and virtually complete. Answer is well structured with no repetition or irrelevant points. Accurate and clear expression of ideas with no errors in use of technical terms.	 1b) Y has H-bonds <u>between molecules</u> and X has dip-dip imf 1c) More energy required to overcome H-bonds Mention of covalent bond breaking loses 1c 	
07.2	Level 2 3-4 marks	All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR two stages are covered and are generally correct and virtually complete. Answer shows some attempt at structure Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points. Some minor errors in use of technical terms	 Stage 2: ¹³C NMR 2a) Both have 3 peaks/absorptions in their ¹³C NMR 2b) X has peaks at 20-50 OR 190-220ppm 2c) Y has peaks at 50-90 OR 90-150ppm (Ignore peaks at 5-40ppm - present in both) Stage 3: ir 	6
	Level 1 1-2 marks	Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order. Answer may contain valid points which are not clearly linked. Errors in the use of technical terms.	 3a) X has a peak (for C=O) at 1680-1750 cm⁻¹ 3b) Y has peak (for O–H) at 3230-3550 cm⁻¹ OR peak (for C=C) at 1620-1680 cm⁻¹ 3c) They would have different fingerprint regions (below 1500 cm⁻¹) 	
	0 mark	Insufficient correct chemistry to gain a mark.		

10.3	Compounds with molecular formula $C_6H_{14}O_2$ also have a relative molecular mass of 118 to the nearest whole number. These include the diol shown.	Do not write outside the box
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Deduce the number of peaks in the ¹ H NMR spectrum of this diol. [1 mark]	
10.4	Draw the structure of a different diol also with molecular formula $C_6H_{14}O_2$ that has a ¹ H NMR spectrum that consists of two singlet peaks. [1 mark]	
10.5	The dicarboxylic acid in question 10.1 and the isomers of $C_6H_{14}O_2$ in Questions 10.3 and 10.4 all have a relative molecular mass of 118	
	State why the dicarboxylic acid can be distinguished from the two diols by high resolution mass spectrometry using electrospray ionisation. [1 mark]	
		10
	Turn over for the next question	

Question Answers Additional Comments/Guidelines Mark	Question
--	----------

G 10.3	4 or four		1
10.4	$\begin{array}{c c} CH_3 & CH_3 \\ I & I \\ CH_3 - C - CH_3 \\ I & I \\ OH & OH \\ OH & OR \\ OH & OH \\ OH & OH \\ OH \\ OH \\ OH \\ OH$		1
10.5	The precise (relative molecular) masses are <u>different</u> or wtte	Allow M _r are different to 2 or more or several dp Ignore different molecular formula Ignore accuracy Penalise fragments	1

		Do not write
0 7	This question is about NMR spectroscopy.	outside the box
0 7.1	A compound is usually mixed with Si(CH ₃) ₄ and either CCl ₄ or CDCl ₃ before recording the compound's ¹ H NMR spectrum.	
	State why Si(CH ₃) ₄ , CCl ₄ and CDCl ₃ are used in ¹ H NMR spectroscopy.	
	Explain how their properties make them suitable for use in ¹ H NMR spectroscopy. [6 marks]	

Question 7 continues on the next page

Turn over ►

		Do not write outside the
0 7 . 2	Deduce the splitting pattern for each of the peaks given by the H atoms labelled \mathbf{x} , \mathbf{y} and \mathbf{z} in the ¹ H NMR spectrum of the compound shown.	box
	xyz CH ₃ CHClCOCH(CH ₃) ₂	
	[3 marks]	
	x	
	z	
0 7.3	Suggest why it is difficult to use Table B in the Data Booklet to predict the chemical shift (δ value) for the peak given by the H atom labelled y . [1 mark]	
07.4	Two isomers of CH ₃ CHClCOCH(CH ₃) ₂ each have two singlet peaks only in their ¹ H NMR spectra. In both spectra the integration ratio for the two peaks is 2:9	
	Deduce the structures of these two isomers. [2 marks]	
	Isomer 1	
	Isomer 2	
		12

Question		Answers	Additional Comments/Guidelines	Mark
Question 07.1	This questic Scheme Ins Level 3 5-6 marks Level 2 3-4 marks Level 1 1-2 marks 0 mark	Answers In is marked using Levels of Response. Refer to the Mark structions for Examiners for guidance. All stages are covered and each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3. All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR two stages are covered and are generally correct and virtually complete. Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3. Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but stage(s) may be incomplete. Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3. Two stages are covered but stage(s) may be incomplete. Answer includes isolated statements but these are not presented in a logical order. Insufficient correct chemistry to gain a mark.	Additional Comments/Guidelines Indicative Chemistry content Stage 1: 1a CDCl ₃ or CCl ₄ solvent 1b TMS as reference / calibration / standard / peak at 0 (ppm) 1c Inert (so unlikely to react with the sample allow if inert tied to either TMS or CDCl ₃ or CCl ₄) Stage 2 CCl ₄ or CDCl ₃ as solvent: 2a (Both) have no H (atoms so give no signals in spectrum) tied to either CDCl ₃ or CCl ₄ 2b CCl ₄ non polar (- good solvent for non-polar organic molecules) 2c CDCl ₃ polar covalent molecule (– good solvent for polar organic compounds) Stage 3 TMS as reference: 3a (Lots (12) of equivalent H to) give one signal / single environment 3b Signal in an area away from other typical H signals / peak upfield from others OR	Mark
			signals / peak upfield from others OR (Low electronegativity of Si shifts) signal right 3c Easy to remove / volatile / low bp	

07.2	M1 x – doublet M2 y – quartet	Allow similar words eg double, quadruplet Allow numbers	1
01.2	M3 z – doublet	Allow diagrams with correct numbers of lines	1
07.3	H attached to both C-Cl and adjacent to C=O so doesn't fit with data in table B		1
	M1	Allow abbreviated structural formulae	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
07.4	M2		1
	$H_{3}C - C - C - C - C - C - C - C - C - C -$		

0 6	This question is about isomers with the	molecular formula C₅H₁₀O	Do not write outside the box
06.1	Draw the skeletal formula of a branched $C_5H_{10}O$ that is optically active.	l chain aldehyde with molecular formula [1 mark]	
06.2	Describe how you distinguish between s the branched chain aldehyde $C_5 H_{10} O$	separate samples of the two enantiomers of [2 marks]	
06.3	Draw the <i>E</i> and <i>Z</i> forms of a structural is optical and geometric isomerism.	somer of C₅H₁₀O that shows both [2 marks]	
	<i>E</i> isomer	Z isomer	
	Question 6 continues	on the next page	
		Turn over ▶	_' ▶

Turn over ►

Question	Answers	Additional Comments/Guidelines	Mark
06.1	0		1

Question	Answers Additional Comments/Guidelines	Mark
06.2	Use Plane polarised light	M1
	rotates (the plane of) in opposite directions	M2

Question	Answers	Additional Comments/Guidelines	Mark
	$ \begin{array}{c} OH \\ CHCH_3 \\ CH_3 \\ H \end{array} $	Must be E isomer	M1
06.3	CH_{3} $CHCH_{3}$ $CHCH_{3}$ $CHCH_{3}$	Must be Z isomer Allow 1 mark out of 2 for 2 correct structures but shown in the wrong boxes	M2

Question	Answers	Additional Comments/Guidelines	Mark
	0		
06.4			M1
			M2

Question	Answers	Additional Comments/Guidelines	Mark
07.1	Tick in carbonyl box only		1

Question	Answers	Additional Comments/Guidelines	Mark
	Peak at 2220-2260 cm ⁻¹ (for C \equiv N) disappears	If both C≡N disappears and N-H appears without	M1
07.2	Peak at 3300-3500 cm ⁻¹ (for N-H) appears	wavenumbers scores 1	M2
	Fingerprint region different		M3

Question	Answers	Additional Comments/Guidelines	Mark
07.3	Integration ratio 2:2:3	If no link between delta value and oxygen and chlorine, then can award 1 mark for correct explanation of splitting of all 3 peaks	M1
	Peak at 3.95 triplet (integration 2) Cl-CH ₂ next to CH_2		M2
	Peak at 3.65 triplet (integration 2) O-CH ₂ next to CH_2	If no explanation of splitting, then can award 1 mark	M3
	Peak at 3.35 singlet (integration 3) O-CH $_3$ no adjacent H	for 3 correct links between delta value and oxygen and chlorine	M4
	Structure CH ₃ -O-CH ₂ CH ₂ Cl		M5

		Do not write outside the
08	This question is about making a diester from cyclohexanol.	box
	$\begin{array}{c} & & \\$	
	0 0	
0 8.1	State the type of reaction in step 1 .	
	Give the name of the reagent needed for step 1. [2 marks]	
	Type of reaction	
	Reagent	
0 8 . 2	State the reagents needed and give equations for step 2 and step 3 .	
	Show the structure of Compound G in your equations. [4 marks]	
	Step 2 reagent	
	Step 2 equation	
	Step 3 reagent	
	Step 3 equation	

	D n n n n n n n n n n
Cyclohexane-1,2-diol reacts with ethanedioyl dichloride.	outside
Give the name of the mechanism for this reaction.	
Complete the mechanism to show the formation of one ester link in the first step of this reaction.	
[5 marks]	
Mechanism name	
Mechanism	
Suggest why chemists usually aim to design production methodswith fewer steps	
with a high percentage atom economy.	
Eewer steps	
High percentage atom economy	
	13
	Cyclohexane-1,2-diol reacts with ethanedioyl dichloride. Give the name of the mechanism for this reaction. Complete the mechanism to show the formation of one ester link in the first step of this reaction. [5 marks] Mechanism name Mechanism $ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $

Question	Answers	Additional Comments/Guidelines	Mark
08.1	Dehydration	Allow (acid catalysed) Elimination	M1
	Conc H ₂ SO ₄	Allow Conc H ₃ PO ₄	M2

Question	Answers	Additional Comments/Guidelines	Mark
08.2	Br ₂	Allow bromine (water) Allow Cl_2 or l_2 Allow O_2 if epoxide route used	M1
	+ Br2	allow conseq equation to H ₂ , H ₂ O, HBr, HCl. HI and H ₂ SO ₄	M2
		An epoxide is a feasible alternative that could score here and consequentially M3 and M4	
	NaOH	Or KOH or other suitable strong alkali	M3
	Br + 2NaOH + 2NaBr	Allow this equation with molecular formulae	M4

Question	Answers		Additional Comments/Guidelines	Mark
	M1 (nucleophilic)addition-elimination		Note lone pair required for M5	1
08.3	OH COCL OH COCL M2 curly arrow from lp on O to C M3 curly arrow from double bond to O	H O Cl OH COCl M4 for structure of intermediate M5 for 3 curly arrows		M2 M3 M4 M5

Question	Answers	Additional Comments/Guidelines	Mark
	Less energy used OR Better yield	OR reduces practical losses, simpler plant,	M1
08.4	Less waste OR Less pollution	OR maximises the use of raw materials in the process into useful products, saves resources	M2

This question is about compound X with the empirical formula C₂H₄O

Figure 2 shows the infrared spectrum of X.

Figure 3 shows the ¹³C NMR spectrum of **X**.

The ¹H NMR spectrum of **X** shows four peaks with different chemical shift values. **Table 3** gives data for these peaks.

Chemical shift δ / ppm	3.9	3.7	2.1	1.2
Splitting pattern	quartet	singlet	singlet	doublet
Integration value	1	1	3	3

0 6

Do not write outside the

box

the structure of compound X .	[6 marks]

Question	Answers		Additional Comments/Guidelines	Mark
Question	This questic Scheme Ins Level 3 5-6 marks Level 2 3-4 marks	Answers on is marked using Levels of Response. Refer to the Mark structions for Examiners for guidance. All stages are covered and each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3 Covers at least 1 point for stage 1, 3 for stage 2 and 3 for stage 3. All stages are covered but stage(s) may be incomplete or may contain inaccuracies Covers at least 1 point for stage 1 stage 2 and stage 3. OR two stages are covered and are generally correct and	Additional Comments/Guidelines Indicative Chemistry content Stage 1: infrared 1a) (broad peak) at 3400 cm ⁻¹ (any value from 3230- 3550) indicates <u>OH in alcohols</u> 1b) peak at 1720 cm ⁻¹ (any value from 1680-1750) indicates C=O Stage 2: ¹ H nmr 2a) peak at 3.9 ppm integration 1 so 1 H-C-O AND quartet so adjacent to CH ₃ (stated or shown) 2b) peak at 3.7 ppm integration 1 so HO-C-(stated or shown) 2c) peak at 2.1 ppm integration 3 so H ₃ C-C=O AND singlet so no adjacent H (stated or shown) 2d) peak at 1.2 ppm integration 3 so H ₃ C- AND doublet so adjacent to CH (stated or shown)	Mark 6
00.1		virtually complete. Covers at least 1 point for stage 1, and 3 for stage 2 or stage 3 OR 3 for stage 2 and 3 for stage 3 Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3.	Stage 3: ¹³ C nmr 3a) peak at 210 ppm C=O <u>aldehydes or ketones</u> 3b) peak at 75 ppm C-O (alcohols, ethers or esters) 3c) peak at 25 ppm 0 R-C-C 3d) peak at 20 ppm	(3 x AO1, 3 x AO3)
	Level 1 1-2 marksTwo stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete.Answer includes isolated statements but these are not presented in a logical order.	- C-C- 3e) structure		
	0 mark	Insufficient correct chemistry to gain a mark	ОН	