A' Level Chemistry
 Year 2

Unit 12: Rates \& Equilibrium

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

$\mathbf{0}$	$\mathbf{2}$ The rate equation for the reaction between compounds \mathbf{A} and \mathbf{B} is

$$
\text { rate }=k[\mathbf{A}]^{2}[\mathbf{B}]
$$

Figure 2 shows how, in an experiment, the concentration of \mathbf{A} changes with time, t, in this reaction.

Figure 2

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ Draw a tangent to the curve at $t=0$ |
| :--- | :--- | :--- | :--- |

[1 mark]

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{2}$ Use this tangent to deduce the initial rate of the reaction. |
| :--- | :--- | :--- | :--- |

\qquad $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ The experiment was repeated at the same temperature and with the same |
| :--- | :--- | :--- | :--- | initial concentration of \mathbf{B} but with a different initial concentration of \mathbf{A}. The new initial rate was 1.7 times greater than in the original experiment.

Calculate the new initial concentration of \mathbf{A}.

Initial concentration of A $\mathrm{mol} \mathrm{dm}{ }^{-3}$

Question	Answers		Mark	Additional Comments/Guidance
02.1	Straight line through $(0.00,0.50)$ which cuts time axis at between 5 and 12.5 secs OR conc 0.3 at time between 2 s and 5 s		1	If 'tangent' does not touch $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ then $\mathrm{CE}=0$ for 2.1 and 2.2. no tangent scores 0 in 2.1 and 2.2.
02.2	Mark is for correct calculation of their gradient : e.g. $0.50 / 11=0.045$ or $4.5 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$		1	```If 'tangent' does not touch 0.5 mol dm 2.2 Ignore negative sign (Expect a value between 0.04 and 0.1```
02.3	[A] increases by $\sqrt{ } 1.7$ $\begin{aligned} \operatorname{new}[\mathrm{A}] & =1.30 \times 0.50 \\ & =0.65\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & 2 \mathrm{sfs} \mathrm{~min} \end{aligned}$	$\begin{aligned} \operatorname{new}[\mathrm{A}]^{2} & =1.7 \times(0.50)^{2} \\ & =0.425 \end{aligned}$ $\begin{gathered} \operatorname{New}[\mathrm{A}]=0.65\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ 2 \mathrm{sfs} \mathrm{~min} \end{gathered}$	2	Award 2 for 0.65 Award 1 mark for an AE using a correct method If candidate use their rate then $\mathrm{CE}=0$ 0.85 scores 1 if $\sqrt{ }$ shown
Total			4	

| $\mathbf{0}$ | $\mathbf{3} \quad$ A series of experiments is carried out with compounds \mathbf{C} and \mathbf{D}. Using the data |
| :--- | :--- | :--- | obtained, the rate equation for the reaction between the two compounds is deduced to be

$$
\text { rate }=k[\mathbf{C}][\mathbf{D}]
$$

In one experiment at $25^{\circ} \mathrm{C}$, the initial rate of reaction is $3.1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ when the initial concentration of \mathbf{C} is $0.48 \mathrm{~mol} \mathrm{dm}^{-3}$ and the initial concentration of \mathbf{D} is $0.23 \mathrm{~mol} \mathrm{dm}^{-3}$

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{1}$ Calculate a value for the rate constant at this temperature and give its units. |
| :--- | :--- | :--- | :--- |

\qquad Units \qquad

Question	Answers	Mark	Additional Comments/Guidance
03.1	$\begin{aligned} & \mathrm{k}=(\text { rate } /[\mathrm{C}][\mathrm{D}])=) \frac{3.1 \times 10^{-3}}{(0.48) \times(0.23)} \\ &=2.8 \times 10^{-2} \quad \mathrm{~min} 2 \mathrm{sfs} \\ & \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1} \end{aligned}$	1 1 1	Mark is for insertion of numbers into correctly rearranged rate equation Mark units separately in any order.

| $\mathbf{0}$ | $\mathbf{5} \quad$ Bromate (V) ions and bromide ions react in acid conditions according to the equation |
| :--- | :--- | :--- |

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

| 0 | 5 | -1 |
| :--- | :--- | :--- | A series of experiments was carried out at a given temperature. The results were used to deduce the rate equation for the reaction.

$$
\text { rate }=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}
$$

Table 2 shows an incomplete set of results.

Table 2

Experiment	$\begin{aligned} & \text { Initial }\left[\mathrm{BrO}_{3}^{-}\right] \\ & / \mathrm{mol} \mathrm{dm}^{-3} \end{aligned}$	Initial $\left[\mathrm{Br}^{-}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial $\left[\mathrm{H}^{+}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate of reaction $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	0.10	0.20	0.30	2.4×10^{-2}
2		0.20	0.30	3.6×10^{-2}
3	0.20	0.40	0.50	
4	0.10	0.10		2.7×10^{-2}

Use the data from Experiment 1 to calculate a value for the rate constant, k, at this temperature and give its units.

Give your answer to an appropriate number of significant figures.
k \qquad Units \qquad

0	$\mathbf{5}$	$\mathbf{2}$ Complete Table 2.

Space for working

Question	Answers	Mark	Additional Comments/Guidance
05.1	$\begin{aligned} & k=\frac{2.4 \times 10^{-2}}{0.10 \times 0.20 \times(0.30)^{2}} \quad(=13.333) \\ & =13 \quad \text { (must be } 2 \mathrm{sfs}) \\ & \text { Units } \underline{\mathrm{mol}^{-3} \mathrm{dm}^{+9} \mathrm{~s}^{-1}} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Mark is for insertion of numbers into a correctly re-arranged equation. Can be in any order
05.2 Marked with 5.1	Experiment $2\left[\mathrm{BrO}_{3}^{-}\right]=0.15$ Experiment 3 rate $=0.26$ or 0.27 Experiment $4\left[\mathrm{H}^{+}\right]=0.45$ or 0.46	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	If k wrong in 5.1 : allow the expected answer OR values conseq to their k (allow mix \& match) $\mathrm{Ex} 2\left[\mathrm{BrO}_{3}^{-}\right]=2 / \mathrm{k}$ Ext 3 rate $=0.02 \times k$ Ex $4\left[\mathrm{H}^{+}\right]=$square root of (2.7/k)
Total			14

$\mathbf{0}$	$\mathbf{4}$	Substances \mathbf{P} and \mathbf{Q} react in solution at a constant temperature.

The initial rate of reaction was studied in three experiments by measuring the change in concentration of \mathbf{P} over the first five seconds of the reaction. The data obtained are shown in Table 1.

Table 1

Experiment	Time after mixing $/ \mathbf{s}$	Concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$	
		\mathbf{Q}	
1	0	1.00×10^{-2}	1.25×10^{-2}
	5.0	0.92×10^{-2}	not measured
2	0	2.00×10^{-2}	1.25×10^{-2}
	5.0	1.84×10^{-2}	not measured
	0	0.50×10^{-2}	2.50×10^{-2}

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$ Complete Table 2 to show the initial rate of reaction of \mathbf{P} in each experiment..$~$

Table 2

Experiment	Initial rate $/ \mathbf{m o l ~ d m}^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}$
1	1.6×10^{-4}
2	
3	

| 0 | $\mathbf{4}$ | .2 Determine the order of reaction with respect to \mathbf{P} and the order of reaction |
| :--- | :--- | :--- | with respect to \mathbf{Q}.

Order with respect to \mathbf{P}
Order with respect to \mathbf{Q}

| 0 | $\mathbf{4}$ | $\mathbf{3}$ | A reaction between substances \mathbf{R} and \mathbf{S} was second order with respect to \mathbf{R} and |
| :--- | :--- | :--- | :--- | :--- | second order with respect to \mathbf{S}.

At a given temperature, the initial rate of reaction was $1.20 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
when the initial concentration of \mathbf{R} was $1.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ and
the initial concentration of \mathbf{S} was $2.45 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
Calculate a value for the rate constant, k, for the reaction at this temperature.
Give the units for k
\qquad

Question	Answers	Additional Comments/Guidelines	Mark
04.1 Expt 2 3.2×10^{-4} Expt 3 3.2×10^{-4} Both needed 1 04.2 P order $=1$ Q order $=2$ These answers only, not consequential on 4.1 Allow if 4.1 blank. 1			

	$\left(\right.$ Rate $\left.=k[R]^{2}[S]^{2}\right)$ $k=R a t e /[R]^{2}[S]^{2} \quad$ OR $1.20 \times 10^{-3} /\left(1.00 \times 10^{-2}\right)^{2}\left(2.45 \times 10^{-2}\right)^{2}$	M1 for rearrangement	
04.3	$k=19992=2.00 \times 10^{4}$	M2 for answer (Allow $\left.1.99 \times 10^{4}\right)$	M2
Units $\mathrm{mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-1}$	Allow conseq units for their expression in M1	M3	

Answer all questions in the spaces provided.

| $\mathbf{0}$ | 1 |
| :--- | :--- | This question is about rates of reaction.

Phosphinate ions $\left(\mathrm{H}_{2} \mathrm{PO}_{2}^{-}\right)$react with hydroxide ions to produce hydrogen gas as shown.

$$
\mathrm{H}_{2} \mathrm{PO}_{2}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{3}{ }^{2-}+\mathrm{H}_{2}
$$

A student completed an experiment to determine the initial rate of this reaction.
The student used a solution containing phosphinate ions and measured the volume of hydrogen gas collected every 20 seconds at a constant temperature.
Figure 1 shows a graph of the student's results.
Figure 1

$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$ State its units. Show your working on the graph.
\qquad Units \qquad

| 0 | 1 | .2 |
| :--- | :--- | :--- | Another student reacted different initial concentrations of phosphinate ions with an excess of hydroxide ions. The student measured the time (t) taken to collect $15 \mathrm{~cm}^{3}$ of hydrogen gas. Each experiment was carried out at the same temperature. Table 1 shows the results.

Table 1

Initial $\left[\mathbf{H}_{2} \mathrm{PO}_{\mathbf{2}}{ }^{-}\right] / \mathrm{mol} \mathrm{dm}^{\mathbf{3}}$	$\boldsymbol{t} / \mathbf{s}$
0.25	64
0.35	32
0.50	16
1.00	4

State the relationship between the initial concentration of phosphinate and time (t).
Deduce the order of the reaction with respect to phosphinate.

Relationship \qquad
Order \qquad

Question 1 continues on the next page

| 0 | 1 | 3 | 3 |
| :--- | :--- | :--- | :--- | and measured in the experiments in Questions 01.1 and 01.2.

Figure 2

The rate equation for a different reaction is

$$
\text { rate }=k[\mathrm{~L}][\mathrm{M}]^{2}
$$

$\mathbf{0}$	$\mathbf{1}$.4
$\mathbf{4}$	Deduce the overall effect on the rate of reaction when the concentrations of both	

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$.	6
Define the term overall order of reaction.		

\qquad
\qquad
\qquad

Turn over for the next question

Question	Answers	Additional comments/Guidelines	Mark
01.1	M1 tangent drawn to the curve at 0,0 M2 Evidence of value used in calculation leading to initial rate $=5.5$ M3 $\quad \mathrm{cm}^{3} \mathrm{~s}^{-1}$	If tangent not drawn at 0,0 then allow conseq gradient calculation Note allow 5-7 NOT cm ${ }^{3} / \mathrm{s}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
01.2	M1 $\quad\left[\mathrm{H}_{2} \mathrm{PO}_{2}{ }^{-}\right]^{2} \propto 1 / t$ M2 Order $=2$	Accept time argument eg if conc doubled time is quartered Accept suitable words that implies a square or square root relationship Not simple description of as conc increases time decreases	1

| 1 | $\mathbf{0}$ | This question is about rates of reaction. |
| :--- | :--- | :--- | lodine and propanone react together in an acid-catalysed reaction

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}(\mathrm{aq})+\mathrm{HI}(\mathrm{aq})
$$

A student completed a series of experiments to determine the order of reaction with respect to iodine.

Method

- Transfer $25 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ propanone solution into a conical flask.
- Add $10 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$
- Add $25 \mathrm{~cm}^{3}$ of $5.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{I}_{2}(\mathrm{aq})$ and start a timer.
- At intervals of 1 minute, remove a $1.0 \mathrm{~cm}^{3}$ sample of the mixture and add each sample to a separate beaker containing an excess of $\mathrm{NaHCO}_{3}(\mathrm{aq})$
- Titrate the contents of each beaker with a standard solution of sodium thiosulfate and record the volume of sodium thiosulfate used.

| $\mathbf{1}$ | $\mathbf{0}$. | $\mathbf{1}$ Suggest why the $1.0 \mathrm{~cm}^{3}$ portions of the reaction mixture are added to an excess of |
| :--- | :--- | :--- | NaHCO_{3} solution.

\qquad
\qquad
\qquad
\qquad
10.2 Suggest why the order of this reaction with respect to propanone can be ignored in this experiment.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10 continues on the next page

The volume of sodium thiosulfate solution used in each titration is proportional to the concentration of iodine in each beaker.

Table 5 shows the results of the experiment.
Table 5

Time / minutes	Volume of sodium thiosulfate solution $/ \mathbf{c m}^{\mathbf{3}}$
1	41
2	35
3	24
4	22
5	16
6	10

1	0	3
3	Use the results in Table 5 to draw a graph of volume of sodium thiosulfate solution	

Draw a line of best fit.

Volume of sodium thiosulfate solution / cm^{3}

Time / minutes

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{4}$ Explain how the graph shows that the reaction is zero-order with respect to iodine in |
| :--- | :--- | :--- | :--- | the reaction between propanone and iodine.

\qquad
\qquad
\qquad
\qquad
\qquad

Question 10 continues on the next page

Question	Answers	Additional Comments/Guidelines	Mark
10.1 The sodium hydrogencarbonate solution neutralises the acid (catalyst) So stops the reaction M1 Question Answers Additional Comments/Guidelines M2 10.2 The concentration/amount of propanone is much larger than/200 times larger than the concentration/amount of iodine Concentration of propanone is (almost) constant The change in concentration in propanone is negligible M2			
\begin{tabular}{\|c	c	c	}
\hline
\end{tabular} | M1 | | |

Question

Answers
Additional Comments/Guidelines
Mark

Question	Answers	Additional Comments/Guidelines	Mark
10.4 The graph is a straight line / has a constant gradient So the rate of reaction does not change as the concentration (of iodine) changes / the iodine is being used up at a constant rate. Correct rate vs conc graph scores M2 M1	M2		

Name \qquad

| $\mathbf{0}$ | $\mathbf{1}$ | .2 |
| :--- | :--- | :--- | The rate equation for the reaction is

$$
\text { rate }=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]
$$

Table 1 shows the initial concentrations used in an experiment.

Table 1

	$\mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{C O C H}_{\mathbf{3}}$	$\mathbf{I}_{\mathbf{2}}$	\mathbf{H}^{+}
Initial concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$	4.35	0.00500	0.825

The initial rate of reaction in this experiment is $1.45 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
Calculate the value of the rate constant, k, for the reaction and give its units.
k \qquad
Units \qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	Calculate the initial rate of reaction when all of the initial concentrations are halved.

\qquad $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{4}$ | An experiment was done to measure the time, t, taken for a solution of iodine to react |
| :--- | :--- | :--- | :--- | completely when added to an excess of an acidified solution of butanone.

Suggest an observation used to judge when all the iodine had reacted.
\qquad
\qquad

The experiment was repeated at different temperatures.
Figure 1 shows how $\frac{1}{t}$ varied with temperature for these experiments.
Figure 1

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ Describe and explain the shape of the graph in Figure 1. |
| :--- | :--- | :--- | :--- |

Do not write
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$.6

Question	Answers	Additional Comments/Guidelines	Mark
01.1		Apply list principle for more than one structure given Allow 1-iodo-2-butanone	M1 $\begin{gathered} \mathrm{M} 2 \\ (2 \times \mathrm{AO} 1) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
01.2	$\frac{\text { Rate }}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]}=\mathrm{k}$ $\begin{aligned} & \mathrm{k}=4 .(04) \times 10^{-5} \text { or } 0.00004(04) \\ & \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1} \end{aligned}$	Rearranged expression Or with numbers If upside down $=24752 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}$ If multiply $=5.20 \times 10^{-4} \mathrm{~mol}^{3} \mathrm{dm}^{-9} \mathrm{~s}^{-1}$	$\begin{gathered} \text { M1 } \\ \text { M2 } \\ \text { M3 } \\ (3 \times \text { AO1 }) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
01.3	$3.6(25) \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$	Allow 3.59×10^{-5} to 3.63×10^{-5}	$\begin{gathered} 1 \\ (\mathrm{AO} 1) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
01.4	Brown colour removed	Goes colourless Allow (orange) brown to colourless Allow purple to colourless	$\begin{gathered} 1 \\ (\mathrm{AO} 3) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
01.5	As T increases rate (1/t) increases OR time for completion decreases Exponentially OR By a greater/ increasing factor Many more particles have $\mathrm{E} \geq \mathrm{E}_{\mathrm{a}}$	Or rate increases more and more as temp increases i.e. description of exponential increase NOT just higher collision frequency NOT just more successful collisions	$\begin{gathered} \text { M1 } \\ \text { M2 } \\ \text { M3 } \\ (2 \times \mathrm{AO} 1, \\ 1 \times \mathrm{AO} 2) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
01.6	Time $=1 / 0.03=33 \mathrm{~s}$		$\begin{gathered} 1 \\ (\mathrm{AO} 2) \end{gathered}$

