A' Level Chemistry
 Year 2

Unit 12: The Arrhenius Equation

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{2}$ An equation that relates the rate constant, k, to the activation energy, E_{a}, and 10 |
| :--- | :--- | :--- | :--- | the temperature, T, is

$$
\ln k=\frac{-E_{a}}{R T}+\ln A
$$

Use this equation and your answer from Question 3.1 to calculate a value, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the activation energy of this reaction at $25^{\circ} \mathrm{C}$.
For this reaction $\ln A=16.9$
The gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(If you were unable to complete Question 3.1 you should use the value of 3.2×10^{-3} for the rate constant. This is not the correct value.)
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

Question	Answers	Mark	Additional Comments/Guidance

03.2	$\ln k=\ln 2.8 \times 10^{-2}(=-3.58)$	M1	M1 = ln (their k) If incorrect then award M2 and M3 only if In 16.9 used max 3 If temp used 25 max 2 Incorrect rearrangement then M1 only	Alternative value$\ln k=\ln 3.2 \times 10^{-3}=-5.74$
	$E_{\mathrm{a}}=\mathrm{RT}(\ln \mathrm{~A}-\ln k)$ OR $-E_{\mathrm{a}}=\operatorname{RT}(\ln k-\ln \mathrm{A})$ $E_{\mathrm{a}}=8.31 \times 298(16.9+3.58) \quad\left(=50716 \mathrm{~J} \mathrm{~mol}^{-1}\right)$ $E_{\mathrm{a}}=51 \mathrm{~kJ} \mathrm{~mol}^{-1}$	M2		
		M3		$\begin{aligned} & E_{\mathrm{a}}=8.31 \times 298(16.9+5.74) \\ & \left(=56076 \mathrm{~J} \mathrm{~mol}^{-1}\right) \end{aligned}$
		M4	- 50.7 or -51 scores $\max 2$	$E_{\mathrm{a}}=56 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Total		7		

| 0 | 5 | $\mathbf{3}$ | A second series of experiments was carried out to investigate how the rate of the |
| :--- | :--- | :--- | :--- | reaction varies with temperature.

The results were used to obtain a value for the activation energy of the reaction, E_{a}
Identical amounts of reagents were mixed at different temperatures.
The time taken, t, for a fixed amount of bromine to be formed was measured at different temperatures.

The results are shown in Table 3.
Table 3

Temperature, \boldsymbol{T} $/ \mathbf{K}$	$\frac{\mathbf{1}}{\boldsymbol{T}} / \mathbf{K}^{-1}$	Time, \boldsymbol{t} $/ \mathbf{s}$	$\frac{\mathbf{1}}{\boldsymbol{t}} / \mathbf{s}^{-1}$	$\ln \frac{\mathbf{1}}{\boldsymbol{t}}$
286	3.50×10^{-3}	54	1.85×10^{-2}	-3.99
295	3.39×10^{-3}	27	3.70×10^{-2}	
302		15	6.67×10^{-2}	-2.71
312	3.21×10^{-3}	8	1.25×10^{-1}	-2.08

Complete Table 3.

| 0 | 5 | 4 |
| :--- | :--- | :--- | The Arrhenius equation can be written as

$$
\ln k=-\frac{E_{a}}{R}\left(\frac{1}{T}\right)+C_{1}
$$

In this experiment, the rate constant, k, is directly proportional to $\frac{1}{t}$
Therefore

$$
\ln \frac{1}{t}=-\frac{E_{a}}{R}\left(\frac{1}{T}\right)+C_{2}
$$

where C_{1} and C_{2} are constants.
Use values from Table 3 to plot a graph of $\ln \frac{1}{t}$ (y axis) against $\frac{1}{T}$ on the grid.
Use your graph to calculate a value for the activation energy, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction.

The value of the gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Question	Answers	Mark	Additional Comments/Guidance
$\begin{gathered} 05.3 \\ G \end{gathered}$	$\begin{array}{ll} \hline 1 / \mathrm{T} \text { value } & 3.31(1) \times 10^{-3} \text { or } 0.00331(1) \\ \ln (1 / t) \text { value } & -3.30 \text { or }-3.297 \end{array}$	1	Must be 3 sig figs or more Not allow -3.29
$\begin{gathered} 05.4 \\ \text { Can see } \\ 05.3 \end{gathered}$	M1 y axis labelled with values (no units) and plotted points use over half of the axis M2 points plotted correctly (see graph below) M3 best fit straight line (minimum 3 points plotted) M4 gradient $=-6.64 \times 10^{3}(\mathrm{~K})$ or $-6640(\mathrm{~K})$ M5 $\quad E_{\mathrm{a}}=\mathrm{M} 4 \times 8.31$ M6 $\quad=55.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$	1 1 1 1 1 1	+ - one small square for line of best fit Range -6.5×10^{3} to -6.8×10^{3} or -6500 to -6800 If gradient outside range then max 4 for $\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3$ and M5 Range 54.0-56.5
Total			14

| $\mathbf{0}$ | $\mathbf{5}$ The rate constant, k, for a reaction varies with temperature as shown by the equation |
| :--- | :--- | :--- |

$$
k=A e^{-E_{\mathrm{a}} / R T}
$$

For this reaction, at $25^{\circ} \mathrm{C}, k=3.46 \times 10^{-8} \mathrm{~s}^{-1}$
The activation energy $E_{\mathrm{a}}=96.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Calculate a value for the Arrhenius constant, A , for this reaction.
Give the units for A.
05 This question was pulled because it contained an error.
All students were awarded full marks for this question.

A \qquad Units \qquad

An experiment is done to investigate the rate of reaction in Question 04.2.

| 0 | 4 | 4 |
| :--- | :--- | :--- | intervals.

Explain how graphical methods can be used to process the measured results, to confirm that the reaction is first order.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In another experiment, the effect of temperature on the rate of the reaction in Question 04.2 is investigated.

Table 1 shows the results.

Table 1

Temperature $\boldsymbol{T} / \mathbf{K}$	$\frac{\mathbf{1}}{\boldsymbol{T}} / \mathbf{K}^{\mathbf{- 1}}$	Rate constant $\boldsymbol{k} / \mathbf{s}^{-1}$	$\mathbf{I n} \boldsymbol{k}$
293	0.00341	1.97×10^{-8}	-17.7
303	0.00330	8.61×10^{-8}	-16.3
313	0.00319	3.43×10^{-7}	-14.9
318		6.63×10^{-7}	
323	0.00310	1.26×10^{-6}	-13.6

0	4	5

| 0 | $\mathbf{4} .6$ |
| :--- | :--- | :--- | The Arrhenius equation can be written in the form

$$
\ln k=\frac{-E_{\mathrm{a}}}{R T}+\ln \mathrm{A}
$$

Use the data in Table 1 to plot a graph of $\ln k$ against $\frac{1}{T}$ on the grid in Figure 2.
Calculate the activation energy, E_{a}, in $\mathrm{kJ} \mathrm{mol}^{-1}$
The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Figure 2

E_{a} \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

04.5	temperature, T/K	$\frac{1}{T} / K^{-1}$	rate constant, k / \mathbf{s}^{-1}	In k	Allow 3.14×10^{-3}	11
	318	0.00314	6.63×10^{-7}	-14.2		

1	0	5

$$
\ln k=\frac{-E_{\mathrm{a}}}{R T}+\ln \mathrm{A}
$$

Figure 8 shows a graph of $\ln k$ against $\frac{1}{T}$ for the reaction

$$
2 \mathrm{HI}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

Figure 8

Use Figure 8 to calculate a value for the activation energy $\left(E_{\mathrm{a}}\right)$, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction.

The gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
E_{a} \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

Question	Answers	Additional Comments/Guidelines	Mark
10.5	$\begin{aligned} & \text { Gradient }=(-14.1--2.8) /(0.00180-0.00128) \\ &=-11.3 / 0.00052 \\ &=-21731 \end{aligned}$	Allow -21330 to -22130	M1
	$\begin{aligned} & \text { Gradient }=-E_{a} / R \\ & -E_{a}=\text { their answer } \times 8.31\left(=180583 \mathrm{~J} \mathrm{~mol}^{-1}\right) \end{aligned}$		M2
	$E_{\mathrm{a}}=\mathrm{M} 2 \div 1000\left(=181 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		M3

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{7}$ | For a different reaction, Table $\mathbf{2}$ shows the value of the rate constant at different |
| :--- | :--- | :--- | :--- | temperatures.

Table 2

Experiment	Temperature $/ \mathbf{K}$	Rate constant $/ \mathbf{s}^{\mathbf{- 1}}$
1	$T_{1}=303$	$k_{1}=1.55 \times 10^{-5}$
2	$T_{2}=333$	$k_{2}=1.70 \times 10^{-4}$

This equation can be used to calculate the activation energy, E_{a}

$$
\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

Calculate the value, in $\mathrm{kJ} \mathrm{mol}^{-1}$, of the activation energy, E_{a} The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
\qquad

Question	Answers	Additional Comments/Guidelines	Mark
01.7	$\begin{aligned} & \ln \left(1.55 \times 10^{-5} / 1.70 \times 10^{-4}\right)=E_{\mathrm{A} R}(1 / 333-1 / 303) \\ & -2.39=E_{\mathrm{a}}\left(-2.97 \times 10^{-4}\right) \\ & 2.39 \times 8.31 / 2.97 \times 10^{-4}=E_{\mathrm{a}} \\ & 66937 \\ & 66.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	Insertion of correct values Evaluate LHS and fraction on RHS Re-arrange for E_{a} Evaluate convert to $\mathrm{kJ} \mathrm{mol}^{-1}$ If only k_{1} and k_{2} reversed this gives a negative answer for E_{a} Lose M1 and M5 If $A E$ in M2 allow ECF Allow ECF from M4 to M5 for a correct unit conversion Allow range 66.3-67.1	M1 M2 M3 M4 M5 $(5 \times A O 2)$

