A' Level Chemistry Year 2

Unit 18: Reactions of Ions in Aqueous Solution

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms Take Time to Answer Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

Andy Higham - www.chemistrychimp.jimdofree.com

0 7	Solution A contains the compound $[Cu(H_2O)_6]Cl_2$
0 7 . 1	State the type of bonding between the oxygen and hydrogen in this compound. [1 mark]
0 7 . 2	State why the chloride ions in this compound are not considered to be ligands. [1 mark]
07.3	An excess of ammonia was added to a sample of solution A to form solution B . Write an ionic equation for the reaction that occurs when solution A is converted into solution B and state the colour of solution B . [2 marks] Equation
0 7 . 4	Colour Aqueous sodium carbonate was added to another sample of solution A to form a blue-green solid C . Identify the blue-green solid C . [1 mark]
0 7 . 5	Reagent D was added to another sample of solution A to form a yellow-green solution. Identify reagent D and write an ionic equation for the reaction that occurs when the yellow-green solution is formed from solution A . [2 marks] Identity of reagent D [Equation

[2 marks]

9

Turn over for the next question

7.

0

6

Question	Answers	Mark	Additional Comments/Guidance
		T	
07.1	Covalent	1	Do not allow dative covalent or coordinate (covalent)
			1
07.2	Cl ⁽⁻⁾ not donating lone pair (to Cu ⁽²⁺⁾) Cl ⁽⁻⁾ does not form a coordinate/dative bond (to Cu ⁽²⁺⁾)	1	Allow without charges but penalise incorrect charges Cl ⁻ /it is bonded ionically (to Cu ²⁺)
	$[C_{11}(H, O)]^{2+} + 4NH \rightarrow [C_{11}(NH)] (H, O)]^{2+} + 4H O$		Allow combination of:
	$[Cu(11_2O)_6] + 4101_3 \rightarrow [Cu(1011_3)_4(11_2O)_2] + 411_2O$	1	
			$[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_6]^{2^+} + 2\operatorname{NH}_3 \rightarrow [\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_4(\operatorname{OH})_2] + 2\operatorname{NH}_4^+$
07.3			$[Cu(H_2O)_4(OH)_2] + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 2H_2O + 2OH^{-1}$
	Deep blue / Royal blue / Dark blue (solution)	1	Do not penalise missing square brackets Ignore initial colour of Cu ²⁺ (aq)
		-	
07.4	CuCO ₃ or copper carbonate	1	Penalise incorrect oxidation state Allow correct formula for basic copper carbonate
		1	
	HCl/ hydrochloric acid		Ignore concentration
		1	Allow soluble chloride salt Also allow any reagent which leads to a change in colour of
			solution due to a change in ligands (eg $NH_2CH_2CH_2NH_2$) or
07.5			change in oxidation state (eg SO ₂) and associated correct
	$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$		equations.
	$[Cu(H_2O)_6]^{2+} + 4HCl \rightarrow [CuCl_4]^{2-} + 6H_2O + 4H^+$	1	Mark independently

07.6	(3)d ¹⁰ or has full (3)d (sub) shell/orbital It is colourless/cannot absorb (frequencies of) visible light	1 1	Ignore clear
Total		9	

Turn over ►

box

04.4	Give the formula of Precipitate M and state its colour.	Do not writ outside the box
	Formula of M	
04.5	Transition metal complexes have different shapes and many show isomerism.	
	Describe the different shapes of complexes and show how they lead to different types of isomerism. Use examples of complexes of cobalt(II) and platinum(II).	
	You should draw the structures of the examples chosen. [6 marks]	

8

Question	Answers	Additional Comments/Guidelines	Mark
	[Fe(OH) ₃ (H ₂ O) ₃]	M2: Allow rod brown	1
04.1	Brown		1
	$2[Fe(H_2O)_6]^{3+} + 3CO_3^{2-} \rightarrow 2[Fe(OH)_3(H_2O)_3] + 3CO_2 + 3H_2O$	M3: Allow correct equations with Na ₂ CO ₃ M3: Ignore state symbols	1
04.2	[FeCl ₄] ⁻		1
	$[Fe(H_2O)_6]^{3+} + 4CI^{-} \rightarrow [FeCI_4]^{-} + 6H_2O$	M2: Allow correct equations with HCI	1
04.3	(XS) Zn (in acid or HCI or H_2SO_4)	Allow KI/potassium iodide	1
04.4	$[Fe(OH)_2(H_2O)_4]$		1
04.4	green		1

	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how	Indicative Chemistry content	
	to mark this question.	Stage 1: shapes of complexes	
	Level 3	1a octahedral or 6 co-ordinate diagram	
	5–6 marks All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3	1b tetrahedral or square planar or 4 co-ordinate diagram	6
		Stage 2: cis/ trans isomerism (or E-Z or geometric)	
	examples of pairs of cobalt or platinum complex isomers.	2a cis/trans isomerism in either square planar and/or	
		octahedral complexes	
	3–4 marks	2b Diagrams showing cis and trans isomerism in a square	
	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.	planar complex	
04 5		2c Diagrams showing cis and trans isomerism in both	
01.0		isomers of octahdedral complexes eg draw cis <u>and</u> trans	
	Answer is illustrated using diagrams of at least 1 specific example of a pair of cobalt or platinum complex isomers.	$M(H_2O)_4(OH)_2 \text{ or } [M(NH_3)_4(H_2O)_2]^{2+}$	
	Level 1	Stage 3: optical isomerism	
	Two stages are covered but the description of each stage may	3a optical isomerism / non superimposable mirror images in	
	be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually	octahedral complexes	
	complete. Answer includes isolated statements and these are presented in a logical order.	3b occurs with a specific bidentate ligands $eg.C_2O_4^{2^-}$ or	
	Answer is illustrated using at least 1 appropriate diagram or formula.	$NH_2CH_2CH_2NH_2$	
		3c draw both optical isomers of eg $[M(NH_2CH_2CH_2NH_2)_3]^{2+}$	
	Level 0 0 marks Insufficient correct chemistry to gain a mark.		

0 5	Some reactions of the $[\Lambda](H, \Omega)$ ¹³⁺ (as) ion are shown	Do not outsid bo
	Colourless solution containing complex ion A $Na_{4}EDTA(aq) \qquad [Al(H_{2}O)_{6}]^{3+}(aq) \qquad Na_{2}CO_{3}(aq) \qquad \textbf{B}(s) \\ White \\ precipitate \\ NaOH(aq) \qquad \qquad$	
0 5.1	Give the formula of the white precipitate B .	
	State one other observation when Na ₂ CO ₃ (aq) is added to a solution containing $[Al(H_2O)_6]^{3+}(aq)$ ions.	
	Give an equation for this reaction. [3 marks]	
	Formula of B	_
	Observation	_
	Equation	
		-
0 5.2	Give the formula of the complex ion C .	
	State one condition needed for the formation of C from $[Al(H_2O)_6]^{3+}(aq)$ and NaOH(aq).	
	Give an equation for this reaction. [3 marks]	
	Formula of C	_
	Condition	_
	Equation	
	Equation	
	Equation	

0 5.3	Deduce the formula of the complex ion A . [1 mark]	Do not write outside the box
05.4	Explain, with the use of an equation, why a solution containing [Al(H ₂ O) ₆] ³⁺ has a pH <7 [3 marks] Equation	
	Explanation	
		10
	Turn over for the next question	
	Turn over ►	

Question	Answers	Additional comments/Guidelines	Mark
05.1	M1 B = Al(H ₂ O) ₃ (OH) ₃	Ignore []	1
	M2 bubbles/effervescence	M2 Do not allow gas evolved	1
	M3 2 $[Al(H_2O)_6]^{3+}$ + $3CO_3^{2-} \rightarrow 2 Al(H_2O)_3(OH)_3 + 3H_2O + 3CO_2$	M3 Ignore absence of square brackets around Al complex	1
		M3 Allow correct balanced equations with Na_2CO_3	
	M1 $C = [Al(OH)_4]^-$ OR $[Al(H_2O)_2(OH)_4]^-$ OR $[Al(OH)_6]^{3-}$		1
	M2 Excess NaOH	M2 Allow excess OH ⁻	1
05.2	M3 [Al(H ₂ O) ₆] ³⁺ + 4 OH ⁻ → [Al(OH) ₄] ⁻ + 6 H ₂ O	M3 Allow equations to form $Al(H_2O)(OH)_5^{2-}$	1
	$[Al(H_2O)_6]^{3+}$ + 4 OH ⁻ → $[Al(H_2O)_2(OH)_4]^-$ + 4 H ₂ O OR	M3 Allow correct balanced equations with NaOH	
	$[Al(H_2O)_6]^{3+} + 6 OH^- \rightarrow [Al(OH)_6]^{3-} + 6 H_2O$		
05.3	[Al(EDTA)] ⁻	Do not penalise absence of square brackets	1
	M1 $[Al(H_2O)_6]^{3+} + H_2O \rightleftharpoons [Al(H_2O)_5(OH)]^{2+} + H_3O^+ OR$ $[Al(H_2O)_6]^{3+} \rightleftharpoons [Al(H_2O)_5(OH)]^{2+} + H^+$	Accept other equations	1
05.4	M2 <u>Al³⁺ has a small size and</u> high charge OR has a high charge density	M2 Allow the aluminium ion has a small size and high charge OR has a high charge density	1
	M3 Weakens the OH bond (in water) releasing H ⁺ ions		1

			Do not write
0 4	This question is about iron and its ions.		outside the box
04.1	Discuss the role of iron as a heterogeneous catalyst in the Haber process.		
	$3 H_2 + N_2 \rightleftharpoons 2 NH_3$		
	Your answer should include:		
	 the meaning of the term heterogeneous catalyst how iron acts as a heterogeneous catalyst 		
	 the factors that affect the efficiency and lifetime of the catalyst. 	[6 marks]	

		Do not write
04.2	Fe ²⁺ ions catalyse the reaction between peroxodisulfate(VI) ions and iodide ions in aqueous solution.	outside the box
	$S_2O_8^{2-}(aq) + 2 I^{-}(aq) → 2 SO_4^{2-}(aq) + I_2(aq)$	
	Explain why this reaction is slow before the catalyst is added. Give two equations to show how Fe ²⁺ ions catalyse this reaction.	
	[4 marks]	
	Why reaction is slow before catalyst added	
	Equation 1	
	Equation 2	
	One a manual when $7r^{2+}$ is not do not obtain the manufactor in Our string 04.2	
0 4 . 3	Give a reason why Zn ²⁺ lons do not catalyse the reaction in Question 04.2 .	

	Figure 2 shows some reactions of iron ions in aqueous solution.	Do not write outside the box
	Figure 2	
	$[Fe(H_2O)_6]^{2+}$ — Air $[Fe(H_2O)_6]^{3+}$	
	Na ₂ CO ₃ (aq) Na ₂ CO ₃ (aq)	
	Precipitate A Precipitate B	
04.5	Identify A and state its colour. [2 marks]	
	Identity	
	Colour	
04.6	Give the formula of B and state its colour.	
	Give an ionic equation for the reaction of $[Fe(H_2O)_6]^{3+}$ with aqueous Na ₂ CO ₃ to	
	form B. [3 marks]	
	Formula	
	Colour	
	Ionic equation	

04.7	Explain why an aqueous solution containing $[Fe(H_2O)_6]^{3+}$ ions has a lower pH than an aqueous solution containing $[Fe(H_2O)_6]^{2+}$ ions.	Do not write outside the box
	[3 marks]	
		25
	Turn over for the next question	
	rum over for the next question	
	Turn over ►	

Question	Answers	Additional comments/Guidelines	Mark
04.1	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question. Level 3 5–6 marks All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3. Level 2 3–4 marks All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3. Level 1 1–2 marks Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order. Level 0 0 marks Insufficient correct chemistry to gain a mark	Stage 1 1a Heterogeneous means in a different phase/state from reactants 1b Catalyst speeds up reaction and is left unchanged OR lowers the activation energy for the reaction Stage 2 2a Hydrogen and nitrogen/reactants adsorb onto the surface/ active sites of the iron 2b Bonds weaken/reaction takes place 2c Products desorb/leave from the surface (of the iron) Stage 3 3a Large surface area (of iron) by using powder or small pellets or support medium/mesh 3b Catalyst poisoned / sulfur poisons or binds to the catalyst 3c Active sites blocked Ignore references to temperature and pressure	6
	Thanks mound on concort on onion y to gain a mark.		

Question	Answers	Additional comments/Guidelines	Mark
	Two negative ions repel So activation energy is high		1
04 2	$2 \text{ Fe}^{2+} + \text{S}_2 \Omega_8^{2-} \rightarrow 2 \text{ S} \Omega_4^{2-} + 2 \text{ Fe}^{3+}$	Ignore any state symbols given	1
		Allow multiples for both equations	
	$2 \ Fe^{3+} + 2 \ I^- \rightarrow 2 \ Fe^{2+} + I_2$	Allow equations in either order	1

Question	Answers	Additional comments/Guidelines	Mark
04.3	(Zn ions) have only one oxidation state Or Zn ²⁺ is the only ion	Allow doesn't have variable oxidation state Allow cannot be oxidised to Zn ³⁺ Ignore has a full d shell	1

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/1 – JUNE 2021

Question	Answers	Additional comments/Guidelines	Mark
04 5	FeCO₃ or iron(II) carbonate		1
04.0	Green	Allow white	1

Question	Answers	Additional comments/Guidelines	Mark
	Fe(H ₂ O) ₃ (OH) ₃	Ignore square brackets if added	1
04.6	brown		1
	2 $[Fe(H_2O)_6]^{3+}$ + 3 $CO_3^{2-} \rightarrow 2 Fe(H_2O)_3(OH)_3$ + 3 H_2O + 3 CO_2	Accept multiples	1

Question	Answers	Additional comments/Guidelines	Mark
	M1 Fe ³⁺ is smaller (than Fe ²⁺) OR Fe ³⁺ has a greater charge OR Fe ³⁺ has a greater charge density OR Fe ³⁺ has a greater charge to size ratio	Penalise $Fe(H_2O)_6^{3+}$ ions once in M1 or M2	1
04.7	M2 Fe ³⁺ ions are more polarising OR Fe ³⁺ ions polarise water molecules more		1
	M3 So more O-H bonds (in the water ligands) break OR more H ⁺ ions released OR weaken O-H bonds in ligands more (in the Fe ³⁺ solution)	Do not allow Fe³⁺ releases 3H⁺ ions	1

0 5	This question is about catalysis	Do not write outside the box
	This question is about catalysis.	
0 5 . 1	Zeolites are used as heterogeneous catalysts in the catalytic cracking of alkanes.	
	Letradecane ($C_{14}H_{30}$) can be cracked to form octane and a cycloalkane.	
	Give an equation for this reaction.	
	State the meaning of the term heterogeneous. [2 marks]	
	Equation	
	Heterogeneous	
0 5.2	A student determines the concentration of ethanedioate ions in an acidified solution by titration with potassium manganate(VII) solution.	
	$2MnO_4^- + 5C_2O_4{}^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$	
	The mixture is warmed before the addition of potassium manganate(VII) solution because the reaction is slow at first. When more potassium manganate(VII) solution is added, the mixture goes colourless quickly due to the presence of an autocatalyst.	
	Explain the meaning of the term autocatalyst.	
	Explain, using equations where appropriate, why the reaction is slow at first and then	
	goes quickly. [6 marks]	

Do not write outside the box

٦

0 5.3	The reaction be catalysed by Co	etween peroxodisulfate ions and iodide i o ²⁺ ions.	ions in aqueous s	solution can be
	у у <u>-</u>	$S_2O_8^{2-}$ + 2 I ⁻ \rightarrow 2 SO ₄ ²⁻ \rightarrow	+ ₂	
	Table 6 gives r	elevant standard electrode potentials.		
		Table 6		
		Electrode half-equation	E ° / V	
		$S_2O_8^{2-}(aq) + 2e^- \rightarrow 2SO_4^{2-}(aq)$	+2.01	
		$\text{Co}^{3+}(\text{aq}) + e^- \rightarrow \text{Co}^{2+}(\text{aq})$	+1.82	
		l₂(aq) + 2 e⁻ → 2 l⁻(aq)	+0.54	
	Use the electro	de potential data to suggest how Co ²⁺ o	atalyses the read	ction. [3 marks]
				[0]

Г

11

Question	Answers			Additional Comments/Guidelines	Mark
05.1	M1 M2	$C_{14}H_{30} \rightarrow C_6H_{12} + C_8H_{18}$ or $C_{14}H_{30} \rightarrow 2 C_3H_6 + C_8H_{18}$ (catalyst is in) different phase/state (to reactants)	M1 M2 Allow Not	Allow any correct structural representation of tetradecane, octane, and a cycloalkane with formula C_6H_{12} OR C_3H_6 Assume that 'it' refers to the catalyst to reactants and products to products	1 1 (1 x AO1, 1 x AO2)

Question	Answers		Additional Comments/Guidelines	Mark
05.2	M1	autocatalyst: product of the reaction catalyses the reaction	Not 'reactant'	1
	M2	slow: negative ions repel / ions of same charge repel		1
	М3	high <i>E</i> a	Allow catalyst reduces E_a as an alternative for M3	
	M4	attraction between oppositely charged ions / negative reactant ion(s) and positive catalyst / Mn^{2+} / Mn^{3+}	Not catalyst reduces E_a as an alternative for M4	1
	М5	4 Mn ²⁺ + MnO ₄ ⁻ + 8 H ⁺ → 5 Mn ³⁺ + 4 H ₂ O		1
	М6	2 Mn ³⁺ + C ₂ O ₄ ²⁻ \rightarrow 2 Mn ²⁺ + 2 CO ₂	Ignore state symbols	
				(6 x AO1)

Question		Answers	Additional Comments/Guidelines	Mark
	M1	idea of change from Co ²⁺ to Co ³⁺ and back to Co ²⁺		1
	M2	E^{Θ} S ₂ O ₈ ²⁻ / SO ₄ ²⁻ > E^{Θ} Co ³⁺ / Co ²⁺ and so S ₂ O ₈ ²⁻ ions oxidise Co ²⁺ or Co ²⁺ ions reduce S ₂ O ₈ ²⁻	M2 alternativeselectrode potential for $S_2O_8^{2-}$ greater than Co^{3+} so $S_2O_8^{2-}$ ions oxidise Co^{2+} or Co^{2+} ions reduce $S_2O_8^{2-}$ OR 2.01 (V) > 1.82 (V) so $S_2O_8^{2-}$ ions oxidise Co^{2+} or Co^{2+} ions reduce $S_2O_8^{2-}$ OR 2 $Co^{2+} + S_2O_8^{2-} \rightarrow 2 Co^{3+} + 2 SO_4^{2-}$ $E_{cell} = (+)0.19 (V)$	1
05.3	М3	E° Co ³⁺ /Co ²⁺ > E° I ₂ /I ⁻ and so Co ³⁺ ions oxidise I ⁻ or I ⁻ ions reduce Co ³⁺	M3 alternatives electrode potential for Co ³⁺ greater than I ₂ so Co ³⁺ ions oxidise I ⁻ or I ⁻ ions reduce Co ³⁺ OR 1.82 (V) > 0.54 (V) so Co ³⁺ ions oxidise I ⁻ or I ⁻ ions reduce Co ³⁺ OR 2 Co ³⁺ + 2 I ⁻ \rightarrow 2 Co ²⁺ + I ₂ $E_{cell} = (+)1.28$ (V)	1 (3 x AO3)
			given) for combined: Co^{2+} ions reduce $S_2O_8^{2-}$ <u>AND</u> Co^{3+} oxidises I ⁻ ,	
			OR $2 \operatorname{Co}^{2+} + \operatorname{S}_2 \operatorname{O}_8^{2-} \rightarrow 2 \operatorname{Co}^{3+} + 2 \operatorname{SO}_4^{2-} \underline{\text{AND}}$ $2 \operatorname{Co}^{3+} + 2 \operatorname{I}^- \rightarrow 2 \operatorname{Co}^{2+} + \operatorname{I}_2$ Not if with negative E_{cell} value Allow if incorrect positive E_{cell} values	