A' Level Chemistry Year 2

Unit 11: Thermodynamics BH Cycles

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms Take Time to Answer

Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

Andy Higham - www.chemistrychimp.jimdofree.com

Answer all questions in the spaces provided				
0 1	This questi	on is about silver iodide.		
0 1 . 1	Define the	term enthalpy of lattice format	ion.	[2 marks]
0 1 . 2	Some enth	alpy change data are shown i	n Table 1.	
			e 1	1
			Enthalpy change / kJ mol ⁻¹	
		$Agl(s) \to Ag^{\scriptscriptstyle +}(aq) + I^{\scriptscriptstyle -}(aq)$	+112	
		$Ag^{+}(g) \rightarrow Ag^{+}(aq)$	-464	
		l⁻(g) → l⁻(aq)	-293	
	Use the da	ta in Table 1 to calculate the e	enthalpy of lattice formation	of
	silver iodide	9.		[2 marks]
		Enthalpy of lattice formation		_ kJ mol⁻¹

8

0 1.3	A calculation of the enthalpy of lattice formation of silver iodide based or perfect ionic model gives a smaller numerical value than the value calcu Question 1.2	n a Ilated in
	Explain this difference. [2	marks]
0 1 . 4	Identify a reagent that could be used to indicate the presence of iodide i an aqueous solution and describe the observation made. [2 Reagent	ons in marks]
	Observation	

Question	Answers	Mark	Additional Comments/Guidance
01.1	Enthalpy change or heat energy change when <u>1 mol</u> of <u>solid</u> ionic compound/substance or <u>1 mol</u> of <u>ionic lattice</u>	1	Allow: <u>enthalpy change</u> for: $M^+(g) + X^-(g) \rightarrow MX$ (s) or $Ag^+(g) + I^-(g) \rightarrow AgI$ (s) $CE=0/2$ if describing wrong process (eg $\land H$ of lattice
	is formed from its gaseous ions.	1	dissociation or ΔH of formation/ or heat energy required) Ignore heat energy released
01.2	lattice dissociation energy= $(112 + 464 + 293) = + 869$ (kJmol ⁻¹)	1	
0112	lattice formation energy = -869 (kJ mol $^{-1}$)	1	(+)869 = 1 mark
[1	CE = 0/2 if atoms/molecules
01.3	Agl contains covalent character	1	For M1, allow the following: not completely ionic / ions not spherical / ions distorted/ some covalent bonding
	Forces/bonds (holding the lattice together) are stronger	1	Ignore covalent bonds stronger (than ionic bonds) Ignore electronegativity Ignore references to energy
			Ignore ammonia/acidified/nitric acid/sulphuric acid
	AgNO ₃	1	
	<u>yellow</u> ppt		
01.4	or	1	M2 dependent on correct M1 but mark on from Ag^+ or Tollens
	Cl ₂ or Br ₂ brown solution/black ppt		

0 1 . 2 Table 1 contains some thermodynamic data.

Table 1

	Enthalpy change / kJ mol ⁻¹
Enthalpy of formation for magnesium oxide	-602
Enthalpy of atomisation for magnesium	+150
First ionisation energy for magnesium	+736
Second ionisation energy for magnesium	+1450
Bond dissociation enthalpy for oxygen	+496
First electron affinity for oxygen	-142
Second electron affinity for oxygen	+844

Calculate a value for the enthalpy of lattice formation for magnesium oxide.

[3 marks]

Enthalpy of lattice formation_____kJ mol⁻¹

6

Turn over for the next question

Turn over ►

Question	Answers	Additional Comments/Guidance	Mark
	$\frac{Mg^{2+}(g) + 2e^{-} + O(g)}{\uparrow}$	One mark for each level with correct state symbols	1
01.1	Mg ²⁺ (g) + e [−] + O [−] (g)		1
	$\frac{Mg^{+}(g) + e^{-} + O(g)}{Mg^{+}(g) + e^{-} + O(g)}$		1
	$\Delta_{\rm f} H = \Delta_{\rm a} H (Mg) + \frac{1}{2} \Delta_{\rm BD} H (O_2) + \Delta_{\rm 1st \ IE} H (Mg) + \Delta_{\rm 2nd \ IE} H (Mg) + \Delta_{\rm 1st \ EA} H (O) + \Delta_{\rm 2nd \ EA} H (O) + \Delta_{\rm LE} H (MgO)$		1
01.2	- 602 = 150 + (½ x 496) + 736 +1450 – 142 + 844 + Δ_{LE} H (MgO) Δ_{LE} H (MgO) = -3888 / -3890 (kJ mol ⁻¹)	Allow answers to 2sf or more 1 mark for +3888 or +3890 1 mark for -4136 or -4140 (not 496 x 1/2)	1 1
Total			6

box

01.3	The enthalpy of lattice formation for caesium iodide in Table 1 is a value obtained by experiment. The value obtained by calculation using the perfect ionic model is –582 kJ mol ⁻¹ Deduce what these values indicate about the bonding in caesium iodide. [1 mark]				
0 1 4	Use data from Table 2 to	show that this react	ion is not feasible a	at 298 K	
	Csl(s)	$) \rightarrow Cs(s) + \frac{1}{2}I_2(s)$	∆ <i>H</i> ° = +337 kJ m	ol ⁻¹	
		Table	2		
		Csl(s)	Cs(s)	l ₂ (s)	
	S ^e / J K ⁻¹ mol ⁻¹	130	82.8	117	
				[4 marl	<s]< td=""></s]<>

ſ

Do not write

outside the box

Question	Answers	Additional Comments/Guidelines	Mark
01.1	Top line $Cs^+(g) + e^- + I(g)$ Lower line $Cs(s) + \frac{1}{2}I_2(s)$		1
01.2	79 + x + 376 - 314 = -337 + 585 So enthalpy change = 107 (kJmol ⁻¹)	Allow I mark for -107 (kJmol ⁻¹) Allow answer to 2sf or more	1
01.3	(Almost/Mostly) purely/ perfectly ionic	If ionic not mentioned, allow no/little covalent bonding/character Penalise references to atoms/molecules Ignore electronegativity	1
01.4	M1 $\Delta S = [(82.8 + \frac{1}{2} \times 117) - 130] = \underline{11.3} (J \text{ K}^{-1} \text{ mol}^{-1})$ M2 $\Delta G = \Delta H - T\Delta S$ M3 $\Delta G = 337 - 298 \times 11.3 \times 10^{-3}$ OR 337000 - 298 x 11.3	M1 Correct entropy change value M2 equation or equation with numbers M3 for converting units: ΔS into kJK ⁻¹ mol ⁻¹ or ΔH into Jmol ⁻¹	1 1 1
	M4 $\Delta G = (+)334 \text{ kJ mol}^{-1} \text{ or } 334000 \text{ J mol}^{-1}$	M4 answer with correct units Any negative answer loses M4	1

Table 1 shows some thermodynamic data.

Table 1

	Enthalpy change / kJ mol ⁻¹
First ionisation energy of strontium	+548
Second ionisation energy of strontium	+1060
Enthalpy of atomisation of chlorine	+121
Enthalpy of atomisation of strontium	+164
Enthalpy of formation of strontium chloride	-828
Enthalpy of lattice formation of strontium chloride	-2112

	Use the data in Table 1 to ca	lculate a value for the electron affi	inity of chlorine. [3 marks]
	Ele	ctron affinity	kJ mol ^{_1}
0 1 . 2	Draw a line from each substa	ince to the enthalpy of lattice form Entha forma	ation of that substance. [1 mark] alpy of lattice tion / kJ mol ⁻¹
	MgCl ₂		-2018
	MgO		-2493
	BaCl ₂		-3889
	Question 1 c	ontinues on the next page	

	Table 2			
	Т	heoretical	Experimenta	ıl
Enthalpy of lattice formation / kJ mol-	-1	-770	-905	
State why there is a difference betwee	en the theoreti	ical and exper	imental values. [1 n	nark
Table 3 shows enthalpy of hydration v	alues for ions	s of some Gro	up 1 elements.	
	Table 3			
	Table 3 Li ⁺ (g)	Na⁺(g)	K ⁺ (g)	7
Enthalpy of hydration / kJ mol ⁻¹ Explain why the enthalpy of hydration	Table 3 Li⁺(g) _519 becomes less	Na⁺(g) —406 s exothermic f	K⁺(g) -322	
Enthalpy of hydration / kJ mol ⁻¹ Explain why the enthalpy of hydration	Table 3 Li ⁺ (g) –519 becomes less	Na⁺(g) –406 s exothermic f	K ⁺ (g) -322 rom Li ⁺ to K ⁺ [2 ma	arks
Enthalpy of hydration / kJ mol ⁻¹ Explain why the enthalpy of hydration	Table 3 Li ⁺ (g) –519 becomes less	Na⁺(g) -406	K ⁺ (g) −322 rom Li ⁺ to K ⁺ [2 ma	arks
Enthalpy of hydration / kJ mol ⁻¹ Explain why the enthalpy of hydration	Table 3	Na⁺(g) -406	K ⁺ (g) −322 rom Li ⁺ to K ⁺ [2 ma	arks
Enthalpy of hydration / kJ mol ⁻¹ Explain why the enthalpy of hydration	Table 3	Na⁺(g) -406	K⁺(g) -322 rom Li⁺ to K⁺ [2 mage]	arks

10

0 1 . 5 Calcium bromide dissolves in water.

Table 4 shows some enthalpy data.

Table 4

	Enthalpy change / kJ mol ⁻¹
Enthalpy of solution of calcium bromide	-110
Enthalpy of lattice formation of calcium bromide	-2176
Enthalpy of hydration of calcium ions	-1650

Use the data in **Table 4** to calculate the enthalpy of hydration, in kJ mol⁻¹, of bromide ions.

[3 marks]

Enthalpy of hydration of bromide ions kJ
--

Turn over for the next question

Turn over ►

Question	Answers	Additional comments/Guidelines	Mark
	$ \begin{split} M1 \\ \Delta_{f} H &= \Delta_{a} H\left(Sr\right) + 2\Delta_{a} H\left(CI\right) + \Delta_{1st IE} H\left(Sr\right) + \Delta_{2nd IE} H\left(Sr\right) + 2\Delta_{EA} H \\ (CI) &+ \Delta_{LE} H\left(Sr\right) \end{split} $		1
01 1	Or $-828 = 164 + (2 \times 121) + 548 + 1060 + (2 \times \Delta_{EA}H) + (-2112)$ M2 2 x $\Delta_{EA}H = -730$		1
	M3 $\Delta_{EA}H = -365 (kJ mol^{-1})$	Allow M3 = M2÷2 (+) 365, -304.5, and -730 = 2 marks (+) 304.5, (+) 730 and -609 = 1 mark (+) 609 = 0 marks	1
01.2	MgCl ₂ -2018 MgO -2493 BaCl ₂ -3889	All three lines must be shown	1

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/1 – JUNE 2020

	(Has) covalent character or partial covalent bonding (as well as ionic bonding)	Allow chloride ion has been polarised or chloride ion distorted	1
		Ignore not perfectly ionic	
01.2		Ignore ions are not spheres	
01.3		Do not allow references to molecules or ions with covalent character	
		Do not allow it is covalently bonded alone	

	M1 (From Li ⁺ to K ⁺) size (of ion) increases OR charge density (of ion) decreases	M1 Allow K+ has more shells or larger distance between nucleus and outer electrons or larger ionic radius Do not allow atomic radius or molecules	1
01.4	M2 (Electrostatic) attraction between metal ion and $O^{\delta-}$ of water decreases or attraction between lone pair on O and + ion decreases	M2 Not dependent on M1	1
		Allow converse arguments	
	$M1 \ \Delta_{sol}H = \Delta_{LEdissociation}H + \Delta_{hyd}H (Ca^{2+}) + 2x \ \Delta_{hyd}H (Br^{-})$ or $M1 - 110 = 2176 + (-1650) + 2x \ \Delta_{hyd}H (Br^{-})$		1
	M2 $(2x \Delta_{hyd} H (Br^{-})) = -636$		1
01.5	M3 $\Delta_{hyd}H$ (Br ⁻) = - 318 (kJ mol ⁻¹)	Allow M3 = M2 \div 2	1
		(+)1858, (+)318 and -636 = 2 marks	
		+3716, –1858 and (+)636 = 1 mark	
		–3716 = 0 marks	

0 1 . 3 Table 1 shows some enthalpy data.

Table 1

	Enthalpy change / kJ mol ^{_1}
Enthalpy of formation of calcium chloride	-795
Enthalpy of atomisation of calcium	+193
First ionisation energy of calcium	+590
Second ionisation energy of calcium	+1150
Enthalpy of atomisation of chlorine	+121
Electron affinity of chlorine	-364

Use **Figure 1** and the data in **Table 1** to calculate a value for the enthalpy of lattice dissociation of calcium chloride.

[2 marks]

Enthalpy of lattice dissociation kJ mol⁻¹

Question 1 continues on the next page

Turn over ►

0 1.4	Magnesi	um chloride dissolves in water.			
	Give an e the entha	equation, including state symbols, to alpy of solution of magnesium chlori	o represe ide is mea	nt the process that occ asured.	urs when
					[1 mark]
0 1.5	Table 2	shows some enthalpy data.			
		Tabl	e 2		
				Enthalpy change / kJ mol ⁻¹	
		Enthalpy of lattice dissociation of N	∕IgCl₂	+2493	
		Enthalpy of hydration of Mg ²⁺ (g)		-1920	
		Enthalpy of hydration of Cl [_] (g)		-364	
	enthalpy	of solution of magnesium chloride.			[2 marks]
		Enthalpy of	solution_		kJ mol⁻¹
0 1.6	The enth	alpy of hydration of $Ca^{2+}(g)$ is -165	50 kJ mol ⁻	-1	
	Suggest	why this value is less exothermic th	an that o	f Mg²⁺(g)	[2 marks]

11

Question	Answers	Additional comments/Guidelines	Mark
01.1	Heat (energy) change at constant pressure	Ignore conditions even if wrong Ignore energy change	1

Question	Answers	Additional comments/Guidelines	Mark
	M2 $Ca^{2+}(g) + 2e^{-} + Cl_{2}(g)$	Alternative M2 Ca ⁺ (g) + e ⁻ + 2 Cl(g)	1
01.2	M3 Ca²⁺(g) + 2 Cl ⁻(g)		1
	M1 Ca(s) + $Cl_2(g)$		1

Question		Answers	Additional comments/Guidelines	Mark
	M1	–795 + LE = 193 + 590 +1150 + (2 × 121) + (2 × –364)	Numbers and factors used correctly from cycle	1
01.3	M2	LE = (+) 2242 (kJ mol ⁻¹)	Rearrangement to calculate LE If one or both factors of 2 missing award 1 mark for (+) 2485, (+)2121 or (+)2606 (kJ mol ⁻¹) Allow 1 mark for – 2242 (kJ mol ⁻¹)	1

Question	Answers	Additional comments/Guidelines	Mark
01.4	$MgCl_2(s) \rightarrow Mg^{2+}(aq) + 2 Cl^{-}(aq)$	Allow MgCl ₂ (s) \rightleftharpoons Mg ²⁺ (aq) + 2 Cl ⁻ (aq) Allow MgCl ₂ (s) + aq \rightleftharpoons Mg ²⁺ (aq) + 2 Cl ⁻ (aq)	1

Question	Answers	Additional comments/Guidelines	Mark
01.5	M1 ΔH soln MgCl ₂ = ΔH latt diss+ ΔH hyd Mg ²⁺ + 2 ΔH hyd Cl ⁻ OR 2493 –1920 + (2 × –364) M2 = – 155 (kJ mol ⁻¹)	M1 for expression with or without numbers M2 for answer If factor of 2 missing for ΔH hyd Cl ^{-,} allow 1 mark for 209	1

Question	Answers	Additional comments/Guidelines	Mark
	M1 Ca ²⁺ (ion) bigger/lower charge to size ratio (than Mg ²⁺)	Allow converse answers	1
		M1 Do not accept Ca ²⁺ is a bigger atom/molecule	
01.6		M1 Allow Ca ²⁺ has more shells/ more distance of outer e to nucleus	1
		Ignore more shielding	
	M2 weaker attraction/bond to $(O^{\delta}$ in) water		

Do not write outside the 0 3 5 Hydrazine (N₂H₄) is used as a rocket fuel that is oxidised by hydrogen peroxide. The equation for this reaction in the gas phase is Н N-N + 2H-O-O-H \longrightarrow N \equiv N + 4H-O-H н The enthalpy change for this reaction, $\Delta H = -789 \text{ kJ mol}^{-1}$ Table 3 shows some mean bond enthalpy values. Table 3 N-H N-N N≡N O-H Mean bond 388 163 944 463 enthalpy / kJ mol⁻¹ Define the term mean bond enthalpy. Use the equation and the data in Table 3 to calculate a value for the O-O bond enthalpy in hydrogen peroxide. [5 marks] Definition _____ Bond enthalpy _____ kJ mol⁻¹

17

box

Question	Answers	Additional Comments/Guidelines	Mark
03.5	M1 enthalpy (change) to break <u>1 mol</u> bonds (in gaseous state)	allow heat energy (change) to break <u>1 mol</u> bonds allow the enthalpy needed to break <u>1 mol</u> bonds do not accept enthalpy released	1
	M2 averaged over a range of compounds / molecules		1
	M3 $-789 = 4(388) + 163 + 4(463) + 2(O-O) - 944 - 8(463)$ or $-789 = 4(388) + 163 + 2(O-O) - 944 - 4(463)$ or $-789 = 3567 + 2(O-O) - 4648$ or $-789 = 1715 + 2(O-O) - 2796$		1
	M4 2(O–O) = 292 (kJ mol ⁻¹)		1
	M5 O–O = 146 (kJ mol ⁻¹)	M5 = M4 ÷ 2	1 AO1 AO2

		Do not write outside the
0 3	A student does an experiment to determine a value for the enthalpy of combustion of heptane.	
	Figure 2 shows some of the apparatus used.	
	Figure 2	
	Copper calorimeter 100 g water Burner Heptane	
03.1	Design a table to record all the readings necessary to determine an experimental	
	value for the enthalpy of combustion for heptane in this experiment.	
03.2	The student considered using a glass beaker on a tripod and gauze instead of the clamped copper calorimeter.	
	Suggest two disadvantages of using a glass beaker on a tripod and gauze. [2 marks]	
	Disadvantage 1	
	Disadvantage 2	

03.3	Suggest two reasons why the value of enthalpy of combustion from this experiment is less exothermic than a data book value.	Do not write outside the box
	[2 marks]	
	Reason 2	
0 3.4	Suggest one addition to this apparatus that would improve the accuracy of the enthalpy value obtained. [1 mark]	
		7
	Turn over for the next question	
	Turn over ►	

Question	Answers				Additional Comments/Guidelines	Mark
03.1	Initial Final (ΔT)	Temp/ °C	Burner before Burner after (Mass heptane burned)	Mass /g	M1 for Temperature data including units M2 for Burner mass data including units If either unit missing MAX 1	M1 M2

Question	Answers	Additional Comments/Guidelines	Mark
03.2	Any two from:	Heat capacity of metal is less than glass or vice versa	M1
	Glass is a poorer conductor than copper		M2
	Tripod and gauze would reduce heat transfer		
	Tripod and gauze would have a fixed height above the flame		

Question	Answers	Additional Comments/Guidelines	Mark
03.3	Heat loss to surroundings or to copper/calorimeter		M1
	Incomplete combustion		M2

Question	Answers	Additional Comments/Guidelines	Mark
03.4	Use a wind shield(to reduce heat loss)	Allow use a lid Insulate the sides of the calorimeter	1