A' Level Chemistry Year 2

Unit 12: Equilibrium & Kp

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms Take Time to Answer Use Paper & Calculator Work It Out

Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

The equation shows the final stage in the production of methanol.

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$

20.1 mol of carbon monoxide and 24.2 mol of hydrogen were placed in a sealed container. An equilibrium was established at 600 K. The equilibrium mixture contained 2.16 mol of methanol.

Calculate the amount, in moles, of carbon monoxide and of hydrogen in the equilibrium mixture.

LJ	markal
14	marks]

Amount of carbon monoxide	mol

Amount of hydrogen _____ mol

Question 9 continues on the next page

A different mixture of carbon monoxide and hydrogen was allowed to reach
equilibrium at 600 K

At equilibrium, the mixture contained 2.76 mol of carbon monoxide, 4.51 mol of hydrogen and 0.360 mol of methanol. The total pressure was 630 kPa

Calculate a value for the equilibrium constant, K_p , for this reaction at 600 K and state its units.

[6 marks]

Value of *K*_p _____ Units _____

09.3

Question		Answers	Mark	Additional Comments/Guidance
09.1	Mark Sch	 ation is marked using levels of response. Refer to the terme Instructions for Examiners for guidance on how this question. All stages are covered and the explanation of each stage is generally correct and virtually complete. To access Level 3, statement 3a must be considered. Answer is communicated coherently and shows a logical progression from stage 1 (including 1b) to stage 2 and stage 3 All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3. Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements but these are presented in a logical order, with sensible reasoning. 	6	Indicative Chemistry contentStage 1: Deductions from graph1a Yield increases as temperature increases (or converse)1b After a certain temperature yield no longer increases1c Yield decreases as pressure increases (or converse)Stage 2: Optimum temperature and explanation2a High temperature results in high energy costs/expensive2b (After a certain temperature) yield no longer increasestherefore there is no gain in using a higher temperature2c Optimum temperature is between 780-880°CStage 3: Optimum pressure and explanation3a Low pressure may be too slow3b So compromise pressure required3c Optimum pressure is 1000-2000kPa or moderate pressureused

		_evel 0) marks	Insufficient correct chemistry to gain a mark.			
Q	uestion	1	Answers	Mar	k	Additional Comments/Guidance

	Moles of carbon monoxide	17.9	1	Allow 17.94
09.2	Moles of hydrogen	19.9	1	Allow 19.88

	$K_{\rm p} = \frac{pp({\rm CH}^{3}{\rm OH})}{pp({\rm CO}) \times pp({\rm H}_{2})2}$ ignore brackets	1	If K_p expression incorrect can only score M2 & M3 & M4
	Total moles of gas = $(2.76 + 4.51 + 0.36) = 7.63$	1	If CE in M2 allow ecf for M3, M4 and M6 If no total moles calculated then can only score M1 and M6
09.3	$pp(CO) = \frac{2.76}{7.63} \times 630 \text{ (kPa)} (= 228 \text{ (kPa)})$ $pp(H_2) = \frac{4.51}{7.63} \times 630 \text{ (kPa)} (= 372 \text{ (kPa)})$ $pp(CH_3OH) = \frac{0.36}{7.63} \times 630 \text{ (kPa)} (= 29.7 \text{ (kPa)})$	2	All 3 pp of CO, H_2 and $CH_3OH = 2$ marks 2 pp correct = 1 mark
	$K_p = \frac{29.7}{228 x(372)2} = 9.4(1) \times 10^{-7}$ or $9.4(1) \times 10^{-13}$ if <i>pp</i> in Pa	1	Allow 9.39 to 9.50 x 10 ⁻⁷ (kPa ⁻²)
	can also score M1 from this expression $\underline{kPa^{-2}}$ or $\underline{Pa^{-2}}$ (if converted to 630 000)	1	If no marks awarded allow M6 only for <u>kPa⁻²</u> or <u>Pa⁻²</u>
Total		14	

02.1	Nitrogen and hydrogen were mixed in a 1:3 mole ratio and left to reach equilibrium in a flask at a temperature of 550 K. The equation for the reaction between nitrogen and hydrogen is shown. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ When equilibrium was reached, the total pressure in the flask was 150 kPa and the mole fraction of NH ₃ (g) in the mixture was 0.80 Calculate the partial pressure of each gas in this equilibrium mixture. [3 marks]
	Partial pressure of nitrogenkPa Partial pressure of hydrogenkPa Partial pressure of ammoniakPa
02.2	Give an expression for the equilibrium constant (K _p) for this reaction. [1 mark] K _p

Question	Answers	Additional Comments/Guidance	Mark
	pp nitrogen = 0.25 x 30 = <u>7.5</u> kPa pp hydrogen = 0.75 x 30 = <u>22.5 or 23</u> kPa	(pp hydrogen + nitrogen = 150-120 = 30 kPa)	1
02.1	pp of ammonia = $0.8 \times 150 = \frac{120}{120}$ kPa	Alternative method	1
	$\frac{1}{120}$	pp hydrogen = 0.15 x 150 = <u>22.5 or 23</u> kPa	1
		pp nitrogen = 0.05 x 150 = <u>7.5</u> kPa	
02.2	$K_{p} = \frac{(ppNH_{3})^{2}}{(ppN_{2}) \times (ppH_{2})^{3}}$	Penalise []	1
02.3	$K_p = \frac{(1.10 \times 10^3)^2}{(1.50 \times 10^2)^3 \times 1.20 \times 10^2}$	No mark for this expression	
	= 0.0029 to 0.003(0) or 2.9 x 10 ⁻³ to 3(.0) x 10 ⁻³ kPa ⁻²	If expression inverted in 02.2 allow 1 mark for kPa ² Allow 2.9 to 3(.0) x 10^{-9} Pa ⁻²	1 1
02.4	decrease/smaller/lower	If increase or no change, 0 marks If blank, mark on	1
	(Reaction/equilibrium) <u>shifts/moves/goes</u> in the endothermic direction (which is to the left)	Allow reaction is exothermic so equilibrium <u>moves</u> to the left side	1
	to reduce the temperature OR oppose the increase in temperature		1
Total			9

0 7	Sulfur trioxide decomposes on heating to form an equilibrium mixture containing	Do not write outside the box
	sulfur dioxide and oxygen.	
	$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$	
0 7.1	A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given	
	temperature. The equilibrium mixture contained 6.08 g of sulfur dioxide.	
	Calculate the mass, in g, of oxygen gas in the equilibrium mixture.	
	[2 marks]	
	Mass9	
	Question 7 continues on the next page	
	Turn over ►	

Do not write outside the box

0 7 . 2 A different mass of sulfur trioxide was heated and allowed to reach equilibrium at 1050 K

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

Table 4

The amounts of each substance in the equilibrium mixture are shown in Table 4.

Substance	Amount at equilibrium / mol
sulfur trioxide	0.320
sulfur dioxide	1.20
oxygen	0.600

For this reaction at 1050 K the equilibrium constant, $K_{\rm p}$ = 7.62 x 10^5 Pa

Calculate the mole fraction of each substance at equilibrium. Give the expression for the equilibrium constant, K_p Calculate the total pressure, in Pa, of this equilibrium mixture.

[4 marks]

Mole fraction SO ₃	
Mole fraction SO ₂	
Mole fraction O ₂	

 K_{p}

Total pressure

Do not write outside the For this reaction at 1050 K the equilibrium constant, $K_p = 7.62 \times 10^5$ Pa For this reaction at 500 K the equilibrium constant, $K_p = 3.94 \times 10^4$ Pa box 0 7 . 3 Explain how this information can be used to deduce that the forward reaction is endothermic. [2 marks] 0 7 . 4 Use data from Question 07.3 to calculate the value of K_p , at 500 K, for the equilibrium represented by this equation. Deduce the units of K_p $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$ [2 marks] *К*_р_____ 10 Units _____ Turn over for the next question

Question	Answers	Additional Comments/Guidelines	Mark
07.1	Moles SO ₂ eqbm (=6.08/64.1 = 0.0949) so moles O ₂ eqbm = 0.0474 Mass of oxygen (= 0.0474 <u>x 32(.0)</u>) = 1.52 g	Allow 0.0475 Allow M1 x 32	1 1
	M1: Mole fraction $SO_3 = 0.15$ Mole fraction $SO_2 = 0.57$ Mole fraction $O_2 = 0.28$	Accept fractions for M1	1
07.2	M2: $K_{p} = \frac{(pSO_{2})^{2} x (pO_{2})}{(pSO_{3})^{2}}$ $(= \frac{(\lambda SO_{2})^{2} P^{2} x (\lambda O_{2}) P}{(\lambda SO_{3})^{2} P^{2}})$	Do not accept [] λ = mole fraction	1
07.2	M3: $P = \frac{K_0 x (\lambda SO_3)^2}{(\lambda SO_2)^2 x (\lambda O_2)}$ or $\frac{K_0 x (0.15)^2}{(0.57)^2 x (0.28)}$	M3 is for rearrangement with or without numbers If incorrect rearrangement allow correct M1 and M2 only	1
	M4 P = 1.91×10^5 (Pa) Allow range 1.88×10^5 to 1.94×10^5		1
	M1 Kp is higher at higher temperature or converse		1
07.3	M2 At higher temperature more dissociation occurs / more products are formed / equilibrium shifts to the right/forward direction	M2: Allow converse arguments M2 dependent on M1.	1
	(√3.94 x 10 ⁴ Pa) = 198.5	Allow 198 – 198.5 (answer is 198.49)	1
07.4	Pa ^{1/2} or Pa ^{0.5}	If $\sqrt{7.62} \times 10^5 = 873$ then lose M1 but allow M2	1

06.3	Give an expression for the equilibrium constant (K_p) for this reaction.	Do not write outside the box
	State the units. [2 marks]	
	Kp	
	Units	
06.4	Some more carbon monoxide is added to the mixture in Question 06.2 . The new mixture is allowed to reach equilibrium at temperature <i>T</i> .	
	State the effect, if any, on the partial pressure of methanol and on the value of K_p [2 marks]	
	Effect on partial pressure of methanol	
	Effect on value of K _p	
06.5	State the effect, if any, of the addition of a catalyst on the value of K_p for this equilibrium.	
	Explain your answer. [2 marks]	
	Effect on value of K _p	
	Explanation	
		11
	Turn over for the next question	

06.3	M1 $K_p = \frac{ppCH_3OH}{ppH_2^2 x ppCO}$ OR $\frac{pCH_3OH}{pH_2^2 x pCO}$	Do not allow square brackets	1
	Pa ⁻² or kPa ⁻²	Allow any pressure to power of ⁻²	1
06.4	M1 Increases		1
06.4	M2 No effect		1
	M1 No effect		1
06.5	M2 Increases <u>rate</u> of forward and backward reaction equally/by the same amount OR catalyst does not affect position of equilibrium	M2 Allow Catalyst does not appear in the <i>K</i> _p expression M2 Allow Only temperature affects Kp Ignore Catalysts increase the rate of reaction or rate at which equilibrium is reached	1

0 5	Ethanoic acid an as shown.	d ethane-1,2-0	diol react together to	o form the dies	ter ($C_6H_{10}O_4$)
	2CH₃COOH	I(I) + HOCH	$_2$ CH $_2$ OH(I) \rightleftharpoons C	₆ H ₁₀ O ₄ (I) + 2	H ₂ O(I)
0 5.1	Draw a structura	l formula for th	ne diester C ₆ H ₁₀ O ₄		[1 mark]
05.2			added to a mixture	e of 0.470 mol	of
	ethanoic acid and			tant tomocrati	
	Complete Table		equilibrium at a cons		<i>ле</i> .
			Table 1		
		Amou	nt in the mixture /	mol	
		СН₃СООН	HOCH ₂ CH ₂ OH	$C_6H_{10}O_4$	H ₂ O
	At the start	0.470	0.205	0	0
	At equilibrium	0.180			
					[3 marks]
	Space for workin	g			

0 5.3	Write an expression	on for the equilit	prium constant, K_{c}	, for the read	ction.
	The total volume c correct value for K			e measured t	o allow a
	Justify this statem	ent.			
	Expression				[2 marks]
	Justification				
0 5 . 4	A different mixture and left to reach e Question 5.2 The amounts pres	quilibrium at a c	different temperatu equilibrium mixture	are from the	experiment in
		Amountiu	Table 2		
		CH ₃ COOH	HOCH ₂ CH ₂ OH	C ₆ H ₁₀ O ₄	H ₂ O
	At new equilibrium	To be calculated	0.264	0.802	1.15
	The value of <i>K</i> _c wa Use this value and ethanoic acid pres Give your answer	I the data in Ta l ent in the new e	ble 2 to calculate t equilibrium mixture	the amount, e.	
	Amount of etha	noic acid			mol

	$(\mathcal{K}_{c} =) \frac{[ester] \times [H_{2}O]^{2}}{[CH_{3}COOH]^{2} \times [HOCH_{2}CH_{2}OH]}$	1	Allow words for acid and alcohol
05.3	The volume cancels out (Penalise a contradictory justification from expression if the volumes do not cancel out) OR there are <u>equal no of moles on each side of the equation</u> <u>OR</u> there are <u>equal no of molecules on each side of the equation</u>	1	

	$(\text{Mol CH}_{3}\text{COOH/V})^{2} = \frac{(8.02 \times 10^{-1} / V)(1.15 / V)^{2}}{6.45 \times (2.64 \times 10^{-1} / V)}$	M1	0.789 scores 3 Allow without V : $(nCH_3COOH)^2 = \frac{(8.02 \times 10^{-1})(1.15)^2}{6.45 \times (2.64 \times 10^{-1})}$ If $(nCH_3COOH)^2 = 0.623$ then award M1 and M2
05.4	Mol CH ₃ COOH = $\sqrt{\frac{(8.02 \times 10^{-1}) \times (1.15)^2}{6.45 \times (2.64 \times 10^{-1})}} = \sqrt{0.623}$	M2	If Kc is correct in 05.3 but incorrect rearrangement, then CE=0 except if upside down rearrangement then M3 only awarded for 1.27
	Mol CH ₃ COOH = 0.789 (must be 3 sfs) Allow 0.788 – 0.790	М3	If Kc is incorrect in 05.3 then only M1 can be awarded for correct rearrangement.
Total		9	

0 4	Compounds A and B react together to form an equilibrium mixture containing compounds C and D according to the equation	ng
	$2\mathbf{A} + \mathbf{B} \rightleftharpoons 3\mathbf{C} + \mathbf{D}$	
04.1	A beaker contained 40 cm ³ of a 0.16 mol dm ⁻³ aqueous solution of A . 9.5 × 10 ⁻³ mol of B and 2.8 × 10 ⁻² mol of C were added to the beaker and the was left to reach equilibrium. The equilibrium mixture formed contained 3.9×10^{-3} mol of A .	he mixture
	Calculate the amounts, in moles, of B , C and D in the equilibrium mixture.	[5 marks]
	Amount of B	mol
	Amount of C	mol
	Amount of D	mol
04.2	Give the expression for the equilibrium constant (K_c) for this equilibrium and	d its units. [2 marks]
	K _c	
	Units	

Question	Answers	Mark	Additional Comments/Guidance
	Initial amount of A = 6.4×10^{-3}	M1	If M1 wrong can score max 3
	Equ A = $6.4 \times 10^{-3} - 2x$ \therefore x = 1.25×10^{-3}	M2	If incorrect x can score max 3
04.1	$B = 9.5 \times 10^{-3} - x = 8.25 \times 10^{-3}$	M3	Allow 2 or more sig figs
	$C = 2.8 \times 10^{-2} + 3x = 0.0318$	M4	
	$D = x = 1.25 \times 10^{-3}$	M5	
04.2	$\mathcal{K}_{\rm c} = \frac{[C]^3[D]}{[A]^2[B]}$	1	Penalise () but mark on in 4.2 & 4.3
	Units = mol dm ⁻³	1	If $K_{\rm c}$ wrong no mark for units
04.3 Can see 4.2	M1 for correct rearrangement $[A]^2 = \frac{[C]^3[D]}{K_c[B]}$ or $[A] = \sqrt{\frac{[C]^3[D]}{K_c[B]}}$ M2 for division of mol of B, C and D by correct volume $[A]^2 = \frac{[\frac{1.05}{0.5}]^3[\frac{0.076}{0.5}]}{116 \times [\frac{0.21}{0.5}]}$ or 0.0289 or 0.0290	M1 M2 M3	If K_c wrong in 4.2 can score 1 for dividing by correct volume If K_c correct but incorrect rearrangement can score 1 for dividing by correct volume
	M3 for final answer: $[A] = \underline{0.17}$ (must be 2 sfs)		
	(All) conc fall: (ignore dilution)	1	OR K_c = mole ratio × 1/V
	Equm moves to side with more moles	1	If vol increases, mole ratio must increase
04.4	To oppose the decrease in conc	1	To keep K_c constant If only conc of A falls CE=0 If pressure falls CE=0
Total		13	

09	A and B react together to form an equilibrium mixture.	Do not v outside box	
	$A(aq) + 2B(aq) \rightleftharpoons C(aq)$		
	An aqueous solution containing 0.25 mol of A is added to an aqueous solution containing 0.25 mol of B .		
	When equilibrium is reached, the mixture contains 0.015 mol of C .		
09.1	Calculate the amount of A and the amount of B , in moles, in the equilibrium mixture [2 mar		
	Amount of A mo	ol	
	Amount of B mo	bl	
09.2	At a different temperature, another equilibrium mixture contains 0.30 mol of A , 0.25 mol of B and 0.020 mol of C in 350 cm ³ of solution.		
	Calculate the value of the equilibrium constant K_{c}		
	Deduce the units of K _c [4 mar	ˈks]	
	<i>K</i> _c		
	Units		

IB/M/Jun20/7405/2

	When an excess of water is added to chloroethanal, an equilibrium mixture is formed.
	$ClCH_2CHO(aq) + H_2O(I) \Rightarrow ClCH_2CH(OH)_2(aq)$
	An expression for an equilibrium constant (K) for the reaction under these
	conditions is $K = \frac{[\text{CICH}_2\text{CH}(\text{OH})_2]}{[\text{CICH}_2\text{CHO}]}$
	[CICH ₂ CHO]
09.3	Suggest why an expression for <i>K</i> can be written without the concentration of water. [1 mark]
09.4	Distilled water is added to 4.71 g of chloroethanal (M_r = 78.5) to make 50.0 cm ³ of solution. The mixture is allowed to reach equilibrium.
	The value of the equilibrium constant (K) is 37.0
	Calculate the equilibrium concentration, in mol dm ⁻³ , of ClCH ₂ CH(OH) ₂ [5 marks]
	Concentration mol dm ⁻³

Question		Answers	Additional comments/Guidelines	Mark
09.1	M1	EQM amount A = 0.25 – 0.015 = 0.235 mol	Allow 0.24 mol for M1	1
09.1	M2	EQM amount $B = 0.25 - (2 \times 0.015) = 0.22 \text{ mol}$		1
	M 1	$ \frac{[C]}{K_c} = [A][B]^2 $		1
		0.02	Correct insertion of numbers and use of volume	1
	M2	0.35	Allow ecf from their K_c	
09.2		$\frac{0.30}{0.35} \times \left(\frac{0.25}{0.35}\right)^2$	Scores M1 here (even if volume not used)	
			Kc = 1.067 if vol not used Max 3	
	М3	= 0.13	Kc = 7.63 if expression upside down Max 3	
	M4	Units mol ⁻² dm ⁶	Allow answers using cm ³ and then the corresponding units i.e. 1.31 x 10 ⁵ mol ⁻² cm ⁶	1
			Allow conseq units to wrong K_c	1

09.5	$\left[H_2O\right]$ / conc of water is (effectively) constant (because it it so much larger than the other concentrations)		1
------	--	--	---

	M1 M2	Initial amount ClCH ₂ CHO = ${}^{4.71}/_{78.5}$ = 0.06 mol EQM amount ClCH ₂ CHO = (0.06 – x) mol EQM amount ClCH ₂ CH(OH) ₂ = x mol	Calculates initial mol Sets up algebraic expressions for EQM mol of both If no M2 can only score M3 and M5 conseq leads to 44.4 mol dm ⁻³ via [CICH ₂ CHO] = $\frac{0.06}{0.05}$	1 1
09.4	М3	$37 = \frac{\frac{x}{\psi}}{\frac{(0.06-x)}{\psi}}$	Inserts into <i>K</i> Does not need to show V as it cancels but allow expressions that do show V and subsequent calculations	1
	M4	37(0.06 - x) = x 2.22 = 38x x = 0.058421	Solve for x	1
	М5	$[\text{ClCH}_2\text{CH}(\text{OH})_2] = \frac{0.058421}{0.05} = 1.17 \text{ mol dm}^{-3}$	Calculate concentration	1

0 5	This question is about the equilibrium	
	$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$	
0 5.1	State and explain the effect, if any, of a decrease in overall pressure on the equilibrium yield of SO_3	[3 marks]
	Effect	
	Explanation	
0 5.2	A 0.460 mol sample of SO ₂ is mixed with a 0.250 mol sample of O ₂ in a	
	sealed container at a constant temperature. When equilibrium is reached at a pressure of 215 kPa, the mixture contains 0.180 mol of SO_3	
	Calculate the partial pressure, in kPa, of SO ₂ in this equilibrium mixture.	[4 marks]
	Partial pressure of SO ₂	kPa

IB/M/Jun21/7405/1

Do not write outside the box

IB/M/Jun21/7405/1

0 5. **3** A different mixture of SO_2 and O_2 reaches equilibrium at a different temperature.

Table 4 shows the partial pressures of the gases at equilibrium.

Table 4	ŀ
---------	---

Gas	Partial pressure / kPa
SO ₂	1.67 × 10 ²
O ₂	1.02 × 10 ²
SO ₃	1.85 × 10 ²

Give an expression for the equilibrium constant (K_p) for this reaction.

Calculate the value of the equilibrium constant for this reaction and give its units. [3 marks]

 K_{p}

K_{p}			
	Units		-

Do not write outside the

box

Question	Answers	Additional comments/Guidelines	Mark
	M1 decreases yield		1
05.1	M2 So equilibrium shifts to side with more moles/molecules or more moles/molecules on LHS	Allow M2 independent of M1	1
	M3 So equilibrium shifts (to left side) to oppose decrease in pressure OR to increase pressure	Must refer to equilibrium shifting to gain maximum marks	1

Question	Answers	Additional comments/Guidelines	Mark
	M1 amount SO ₂ (= 0.46 – 0.18) = 0.28 mol		1
	M2 amount O ₂ (= 0.25 – 0.09) = 0.16 mol		1
05.2	M3 total amount (= 0.28 + 0.16 + 0.18) = <u>0.62</u> mol	M4 = $\frac{M1}{M3}$ x 215	1
	M4 partial pressure of SO ₂ = <u>0.28 x</u> 215 = 97(.1) (kPa) 0.62	M3 ~ 2 · 0	1

Question	Answers	Additional comments/Guidelines	Mark
05.0	M1 $K_p = \frac{(pp SO_3)^2}{(pp SO_2)^2 x pp O_2}$	Penalise square brackets in M1	1
05.3	$M2 = 1.2(0) \times 10^{-2}$ M3 = kPa ⁻¹		1

Question	Answers	Additional comments/Guidelines	Mark
05.4	Stays the same		1

	Answer all questions in the spaces provided.
0 1	This question is about equilibria.
0 1.1	Give two features of a reaction in dynamic equilibrium. [2 marks]
	Feature 1
	Feature 2
01.2	A gas-phase reaction is at equilibrium. When the pressure is increased the yield of product decreases.
	State what can be deduced about the chemical equation for this equilibrium. [1 mark]
	Question 1 continues on the next page
	Turn ovor N

Do not write outside the box

		Do
0 1.3	Carbon monoxide and hydrogen react to form methanol.	0
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	
	0.430 mol of carbon monoxide is mixed with 0.860 mol of hydrogen. At equilibrium, the total pressure in the flask is 250 kPa and the mixture contains 0.110 mol of methanol.	
	Calculate the amount, in moles, of carbon monoxide present at equilibrium.	
	Calculate the partial pressure, in kPa, of carbon monoxide in this equilibrium mixture.	
	[3 marks]]
	Amount of carbon monoxide mol	
	Amount of carbon monoxide mol Partial pressure kPa	
0 1.4		
0 1.4	Partial pressure kPa Give an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	
0 1.4	Partial pressure kPa Give an expression for the equilibrium constant (K_p) for this reaction.	3
0 1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]]
) 1.4	Partial pressure kPa Give an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$]
) 1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]	3
1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]	3
) 1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]	3
) 1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]	.]

				D
0 1 . 5	A different mixtu temperature <i>T</i> .	re of carbon monoxide and hyd	rogen is left to reach	equilibrium at a
	Some data for th	nis equilibrium are shown in Tab	le 1.	
		Table 1		
		Partial pressure of CO	125 kPa]
		Partial pressure of CH ₃ OH	5.45 kPa	
		κ _p	1.15 x 10 ⁻⁶ kPa ⁻²]
		$CO(g) + 2H_2(g) \rightleftharpoons$	CH₃OH(g)	
	Calculate the pa	rtial pressure, in kPa, of hydrog	en in this equilibrium	mixture. [3 marks]
		Partial pres	sure	kPa
		Partial pres	sure	kPa
0 1.6	Use the K_p value temperature <i>T</i> .	Partial press e from Table 1 to calculate a val		
0 1.6	Use the K_p value temperature T .		ue for K_p for the follow	
0 1.6	Use the K_p value temperature T . Give the units fo	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	wing reaction at [2 marks]
0 1 . 6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow) + 2 H ₂ (g)	ving reaction at [2 marks]

Question	Answers	Additional Comments/Guidelines	Mark
		allow answers in either order	
01.1	forward and reverse reactions proceed at equal rates		1
01.1	concentrations (of reactants and products) remain constant or concentrations (of reactants and products) stay the same	do not accept equal concentrations do not accept concentrations are the same ignore closed system	1 AO1

Question	Answers	Additional Comments/Guidelines	Mark
01.2	more moles of (gaseous) products (than (gaseous) reactants) or more moles on the RHS (than LHS)	allow molecules do not accept atoms	1 AO3

Question	Answers	Additional Comments/Guidelines	Mark
01.3	M1 (at equilibrium) n(CO) = 0.32 (mol) M2 total number of moles (at equilibrium) = 1.07 (mol) or mole fraction (CO) = 0.299 M3 p(CO) $\left[= \frac{0.320 \times 250}{1.07} \right] = 74.8$ (kPa)	$M3 = \frac{M1 \times 250}{M2}$ allow 75 (kPa) an answer of 67.8 (kPa) = 2 marks max	1 1 1 AO2

Question	Answers	Additional Comments/Guidelines	Mark
01.4	$K_{\rm p} = \frac{\rm p(CH_3OH)}{\rm p(H_2)^2 p(CO)}$	do not accept square brackets	1 AO1

Question	Answers	Additional Comments/Guidelines	Mark
	M1 $p(H_2)^2 = \frac{p(CH_3OH)}{K_p \times p(CO)}$ or $\frac{5.45}{1.15 \times 10^{-6} \times 125}$	rearrangement with or without numbers	1
	M2 $p(H_2) = \sqrt{37913}$ or $p(H_2)^2 = 37913$		1
01.5	M3 p(H ₂) = 194.7 (kPa)	$M3 = \sqrt{M2}$ allow 195 (kPa)	1 AO2
		if rearrangement incorrect in M1 allow M3 only	
		if p(H ₂) is not squared in Question 01.4 allow $p(H_2) = \frac{p(CH_3OH)}{K_p \times p(CO)}$ for M1 and 37913 for M2 (max 2)	

Question	Answers	Additional Comments/Guidelines	Mark
01.6	$= \left(\frac{1}{1.15 \times 10^{-6}}\right) = 8.7(0) \times 10^{5}$ kPa ²	allow 869 565	1 1 AO2

This question is about equilibrium.

1 mol of a diester with molecular formula $C_7H_{12}O_4$ is added to 1 mol of water in the presence of a small amount of catalyst.

The mixture is left to reach equilibrium at a constant temperature.

 $C_7H_{12}O_4(I) + 2H_2O(I) \Rightarrow 2CH_3COOH(I) + HO(CH_2)_3OH(I)$

At equilibrium, \mathcal{X} mol of ethanoic acid are present in the mixture.

Complete **Table 2** by deducing the amounts, in terms of \mathcal{X} , of the diester, water and diol present in the equilibrium mixture.

[3 marks]

Do not write outside the box

Amount in the mixture / mol					
	Diester	Water	Acid	Diol	
At the start	1	1	0	0	
At equilibrium			x		

Table 2

2 Deduce the structure of the diester in Question 05.1

[1 mark]

Question 5 continues on the next page

0 5 .

0 5.3

A new equilibrium mixture of the substances from Question **05.1** is prepared at a different temperature.

 $C_7H_{12}O_4(I) + 2H_2O(I) \rightleftharpoons 2CH_3COOH(I) + HO(CH_2)_3OH(I)$

Table 3 shows the amount of each substance in this new equilibrium mixture.

Table 3

Amount in the mixture / mol				
	Diester	Water	Acid	Diol
At equilibrium	0.971	To be calculated	0.452	0.273

The value of the equilibrium constant, K_c is 0.161 at this temperature.

Calculate the amount of water, in mol, in this new equilibrium mixture. Show your working.

[3 marks]

Do not write outside the

box

7

Amount of water

Question	Answers Additional Comments/Guidelines	Mark
	Amount Diester = 1 - $\frac{x}{2}$	M1
05.1	Amount Water = 1- X	M2
	Amount Diol = $\frac{x}{2}$	М3

Question	Answers	Additional Comments/Guidelines	Mark
05.2		Allow other versions of the structure (abbreviated or displayed)	1

Question	Answers	Additional Comments/Guidelines	Mark
	$K_{c} = \underbrace{0.452^{2} \times 0.273}_{0.971 \times (\text{amount H}_{2}\text{O})^{2}} \text{ or } \underbrace{[\text{acid}]^{2} \times [\text{diol}]}_{[\text{diester}] \times [\text{H}_{2}\text{O}]^{2}}$	OR $K_{c} = \frac{\left(\frac{0.452}{4}\right)^{2} \times \left(\frac{0.273}{4}\right)}{K_{c}}$	M1
05.3	(Amount H ₂ O) ² = $0.452^2 \times 0.273$ or [acid] ² x [diol] = (0.357) 0.161 × 0.971 [diester] x K _c	$\frac{1}{\left(\frac{0.971}{\Psi}\right)\left(\frac{amount\ H20}{\Psi}\right)^2}$	M2
	Amount H ₂ O = $\sqrt{0.357}$ = 0.597 mol		M3

			Do not write outside the box
0 2	Tetrafluoroethene is made from chlorodifluoromethane in this re		DOX
	$2 \operatorname{CHClF}_2(g) \rightleftharpoons \operatorname{C}_2\operatorname{F}_4(g) + 2 \operatorname{HCl}(g) \qquad \Delta H =$		
	A 2.00 mol sample of $CHClF_2$ is placed in a container of volume When equilibrium is reached, the mixture contains 0.270 mol of		
02.1	Calculate the amount, in moles, of C_2F_4 and of HCl in the equilib	brium mixture. [2 marks]	
	Amount of C ₂ F ₄	mol	
	Amount of HCl	mol	
02.2	Give an expression for K_c for this equilibrium.	[1 mark]	
	V		
	Kc		

0 2 . 3	Calculate a value for K_c	Do not write outside the box
	Give its units.	
	[3 marks]	
	<i>K</i> _c Units	
02.4	State and explain the effect of using a higher temperature on the equilibrium yield of	
	tetrafluoroethene. [3 marks]	
	Effect on yield	
	Explanation	
	Question 2 continues on the next page	
	Question 2 continues on the next page	

Turn over ►

			Do not write
02.5	Chemists provided evidence that was used to support a ban on the use of chlorodifluoromethane as a refrigerant.		outside the box
	Many refrigerators now use pentane as a refrigerant.		
	State the environmental problem that chlorodifluoromethane can cause.		
	Give one reason why pentane does not cause this problem.	[2 marks]	
	Environmental problem		
	Reason why pentane does not cause this problem		
			11

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/2 – JUNE 2022

Question	Answers	Additional Comments/Guidelines	Mark
	$C_2F_4 = 0.865 \text{ mol}$	Award 1 mark if HCl = $2 \times C_2F_4$	M1
02.1	HCl = 1.73 mol		M2 (2 x AO2)

Question	Answers	Additional Comments/Guidelines	Mark
02.2	$K_{c} = \frac{[C_{2}F_{4}] [HCl]^{2}}{[CHClF_{2}]^{2}}$	Penalise round brackets	1 (AO2)

Question	Answers	Additional Comments/Guidelines	Mark
	$K_{\rm c} = \frac{[0.865/23.2][1.73/23.2]^2}{[0.27/23.2]^2}$	Allow ecf for use of their answer(s) to Q2.1 and Q2.2 M1 for dividing by volume	M1
02.3	K_c = 1.5(3) must be at least 2sf Allow 1.53-1.54	If no use of volume allow M2 for 35.5 If upside down can allow all 3 marks as ECF to	M2
	Units = mol dm ⁻³	Q2.2 Leads to an answer of 0.65(3) mol ⁻¹ dm ³	M3 (3 x AO2)

Question	Answers	Additional Comments/Guidelines	Mark
	Yield would increase		M1
02.4	Equilibrium opposes temperature increase	Shifts /moves to reduce temperature	M2
	Moves in the <u>endothermic</u> direction	Ignore favours	M3 (3 x AO2)
Question	Answers	Additional Comments/Guidelines	Mark
	Causes ozone depletion/decomposition/damage	Accept hole in the ozone layer	M1
			M2
02.5	Pentane does not have C-Cl bonds	Accept does not produce Cl radicals	IVIZ