A' Level Chemistry
 Year 2

Unit 12: Equilibrium \& Kp

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

| $\mathbf{0}$ | $\mathbf{9}$ There are several stages in the industrial production of methanol |
| :--- | :--- | :--- | from methane.

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{1}$ The first stage involves a gaseous equilibrium between the reactants |
| :--- | :--- | :--- | (methane and steam), and some gaseous products. Figures 1 and $\mathbf{2}$ show the percentage conversion of methane into the gaseous products under different conditions at equilibrium.

Figure 1

Figure 2

Deduce the optimum conditions for the industrial conversion of methane and steam into the gaseous products.

Explain your deductions.
\qquad

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{2}$ The equation shows the final stage in the production of methanol. |
| :--- | :--- | :--- | :--- |

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

20.1 mol of carbon monoxide and 24.2 mol of hydrogen were placed in a sealed container. An equilibrium was established at 600 K . The equilibrium mixture contained 2.16 mol of methanol.

Calculate the amount, in moles, of carbon monoxide and of hydrogen in the equilibrium mixture.Amount of carbon monoxide mol
Amount of hydrogen mol

Question 9 continues on the next page

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{3}$ A different mixture of carbon monoxide and hydrogen was allowed to reach |
| :--- | :--- | :--- | :--- | equilibrium at 600 K

At equilibrium, the mixture contained 2.76 mol of carbon monoxide, 4.51 mol of hydrogen and 0.360 mol of methanol. The total pressure was 630 kPa

Calculate a value for the equilibrium constant, K_{p}, for this reaction at 600 K and state its units.
\qquad Units \qquad

| | Level 0
 0 marks | Insufficient correct chemistry to gain a mark. | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Question | Answers | Mark | Additional Comments/Guidance | |

09.2	Moles of carbon monoxide	17.9	1	Allow 17.94
	Moles of hydrogen	19.9	1	Allow 19.88

09.3	$\begin{aligned} & \begin{array}{l} K_{\mathrm{p}}=\frac{p p\left(\mathrm{CH}^{3} \mathrm{OH}\right)}{p p(\mathrm{CO}) \times p p\left(\mathrm{H}_{2}\right) 2} \end{array} \quad \text { ignore brackets } \\ & \text { Total moles of gas }=(2.76+4.51+0.36)=7.63 \\ & p p(\mathrm{CO})=\frac{2.76}{7.63} \times 630(\mathrm{kPa}) \quad(=228(\mathrm{kPa})) \\ & p p\left(\mathrm{H}_{2}\right)=\frac{4.51}{7.63} \times 630(\mathrm{kPa}) \quad(=372(\mathrm{kPa})) \\ & p p\left(\mathrm{CH}_{3} \mathrm{OH}\right)=\frac{0.36}{7.63} \times 630(\mathrm{kPa})(=29.7(\mathrm{kPa})) \\ & \mathrm{K}_{\mathrm{p}}=\frac{29.7}{228 \times(372) 2}=9.4(1) \times 10^{-7} \quad \text { or } 9.4(1) \times 10^{-13} \text { if } p p \text { in } \mathrm{Pa} \end{aligned}$ can also score M1 from this expression kPa^{-2} or Pa^{-2} (if converted to 630000)	1 1 1 2 1 1	If K_{p} expression incorrect can only score M2 \& M3 \& M4 If CE in M2 allow ecf for M3, M4 and M6 If no total moles calculated then can only score M1 and M6 All 3 pp of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}=2$ marks 2 pp correct $=1$ mark Allow 9.39 to $9.50 \times 10^{-7}\left(\mathrm{kPa}^{-2}\right)$ If no marks awarded allow M 6 only for kPa^{-2} or Pa^{-2}
Total		14	

| 0 | 2 |
| :--- | :--- |\quad Nitrogen and hydrogen were mixed in a 1:3 mole ratio and left to reach equilibrium in a flask at a temperature of 550 K . The equation for the reaction between nitrogen and hydrogen is shown.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

| $\mathbf{0}$ | $\mathbf{2} .1$ | When equilibrium was reached, the total pressure in the flask was 150 kPa and the |
| :--- | :--- | :--- | mole fraction of $\mathrm{NH}_{3}(\mathrm{~g})$ in the mixture was 0.80

Calculate the partial pressure of each gas in this equilibrium mixture.

Partial pressure of nitrogen \qquad
Partial pressure of hydrogen \qquad kPa

Partial pressure of ammonia \qquad kPa

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ Give an expression for the equilibrium constant $\left(K_{p}\right)$ for this reaction.

$K_{\text {p }}$

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ In a different equilibrium mixture, under different conditions, the partial pressures of |
| :--- | :--- | :--- | the gases are shown in Table 2.

Table 2

Gas	Partial pressure / kPa
N_{2}	1.20×10^{2}
H_{2}	1.50×10^{2}
NH_{3}	1.10×10^{3}

Calculate the value of the equilibrium constant $\left(K_{p}\right)$ for this reaction and give its units.
[2 marks]
K_{p} \qquad Units \qquad

| $\mathbf{0}$ | $\mathbf{2} .4$ |
| :--- | :--- | The enthalpy change for the reaction is $-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$

State the effect, if any, of an increase in temperature on the value of K_{p} for this reaction. Justify your answer.

Effect on K_{p} \qquad
Justification \qquad
\qquad
\qquad
\qquad

Question	Answers	Additional Comments/Guidance	Mark
02.1	$\begin{aligned} & \text { pp nitrogen }=0.25 \times 30=\underline{7.5} \mathrm{kPa} \\ & \text { pp hydrogen }=0.75 \times 30=\underline{22.5} \text { or } 23 \mathrm{kPa} \\ & \text { pp of ammonia }=0.8 \times 150=\underline{120 \mathrm{kPa}} \end{aligned}$	$(\mathrm{pp}$ hydrogen + nitrogen $=150-120=30 \mathrm{kPa})$ Alternative method pp hydrogen $=0.15 \times 150=\underline{22.5}$ or 23 kPa pp nitrogen $=0.05 \times 150=\underline{7.5} \mathrm{kPa}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
02.2	$K_{p}=\frac{\left(\mathrm{ppNH}_{3}\right)^{2}}{\left(\mathrm{ppN}_{2}\right) \times\left(\mathrm{ppH}_{2}\right)^{3}}$	Penalise []	1
02.3	$\begin{aligned} & K_{p}=\frac{\left(1.10 \times 10^{3}\right)^{2}}{\left(1.50 \times 10^{2}\right)^{3} \times 1.20 \times 10^{2}} \\ & =0.0029 \text { to } 0.003(0) \quad \text { or } 2.9 \times 10^{-3} \text { to } 3(.0) \times 10^{-3} \\ & \mathrm{kPa}^{-2} \end{aligned}$	No mark for this expression If expression inverted in 02.2 allow 1 mark for kPa^{2} Allow 2.9 to $3(.0) \times 10^{-9} \mathrm{~Pa}^{-2}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
02.4	decrease/smaller/lower (Reaction/equilibrium) shifts/moves/goes in the endothermic direction (which is to the left) to reduce the temperature OR oppose the increase in temperature	If increase or no change, 0 marks If blank, mark on Allow reaction is exothermic so equilibrium moves to the left side	1 1
Total			9

Question 7 continues on the next page

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ A different mass of sulfur trioxide was heated and allowed to reach equilibrium |
| :--- | :--- | :--- | at 1050 K

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The amounts of each substance in the equilibrium mixture are shown in Table 4.
Table 4

Substance	Amount at equilibrium / mol
sulfur trioxide	0.320
sulfur dioxide	1.20
oxygen	0.600

For this reaction at 1050 K the equilibrium constant, $K_{\mathrm{p}}=7.62 \times 10^{5} \mathrm{~Pa}$
Calculate the mole fraction of each substance at equilibrium.
Give the expression for the equilibrium constant, K_{p}
Calculate the total pressure, in Pa , of this equilibrium mixture.

Mole fraction SO_{3}
Mole fraction SO_{2}
Mole fraction O_{2} \qquad
K_{p}

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{3}$ For this reaction at 1050 K the equilibrium constant, $K_{\mathrm{p}}=7.62 \times 10^{5} \mathrm{~Pa}, ~$ |
| :--- | :--- | :--- | For this reaction at 500 K the equilibrium constant, $K_{\mathrm{p}}=3.94 \times 10^{4} \mathrm{~Pa}$

Explain how this information can be used to deduce that the forward reaction is endothermic.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 7 | 4 | Use data from Question 07.3 to calculate the value of K_{p}, at 500 K , for the equilibrium |
| :--- | :--- | :--- | :--- | represented by this equation. Deduce the units of K_{p}

$$
\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

$K_{\text {p }}$ \qquad
Units

Turn over for the next question

Question	Answers	Additional Comments/Guidelines	Mark
07.1	Moles SO_{2} eqbm ($=6.08 / 64.1=0.0949$) so moles O_{2} eqbm $=0.0474$ Mass of oxygen $(=0.0474 \underline{32}(.0))=1.52 \mathrm{~g}$	Allow 0.0475 Allow M1 x 32	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
07.2	M1: Mole fraction $\mathrm{SO}_{3}=0.15$ Mole fraction $\mathrm{SO}_{2}=0.57$ Mole fraction $\mathrm{O}_{2}=0.28$ M2: $K_{\mathrm{p}}=\frac{\left(\mathrm{pSO}_{2}\right)^{2} \times\left(\mathrm{pO}_{2}\right)}{\left(\mathrm{pSO}_{3}\right)^{2}} \quad\left(=\frac{\left.\left(\lambda \mathrm{SO}_{2}\right)^{2} \mathrm{P}^{2} \times\left(\lambda \mathrm{O}_{2}\right) \mathrm{P}\right)}{\left(\lambda \mathrm{SO}_{3}\right)^{2} \mathrm{P}^{2}}\right)$ M3: $\mathrm{P}=\frac{K_{\mathrm{p}} \underline{\mathrm{x}}\left(\lambda \mathrm{SO}_{3}\right)^{2}}{\left(\lambda \mathrm{SO}_{2}\right)^{2} \times\left(\lambda \mathrm{O}_{2}\right)} \quad$ or $\quad \frac{K_{\mathrm{p}} \times(0.15)^{2}}{(0.57)^{2} \times(0.28)}$ $\mathrm{M} 4 \mathrm{P}=1.91 \times 10^{5}(\mathrm{~Pa}) \quad$ Allow range 1.88×10^{5} to 1.94×10^{5}	Accept fractions for M1 Do not accept [] $\lambda=$ mole fraction M3 is for rearrangement with or without numbers If incorrect rearrangement allow correct M1 and M2 only	1 1 1 1
07.3	M1 Kp is higher at higher temperature or converse M2 At higher temperature more dissociation occurs / more products are formed / equilibrium shifts to the right/forward direction	M2: Allow converse arguments M2 dependent on M1.	1
07.4	$\begin{aligned} & \left(\sqrt{ } 3.94 \times 10^{4} \mathrm{~Pa}\right)=198.5 \\ & \mathrm{~Pa}^{1 / 2} \text { or } \mathrm{Pa}^{0.5} \end{aligned}$	Allow 198-198.5 (answer is 198.49) If $\sqrt{7} .62 \times 10^{5}=873$ then lose M1 but allow M2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

0	$6 \quad$ Methanol can be manufactured in a reversible reaction as shown.
$\qquad \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \quad \Delta H^{+}=-91 \mathrm{~kJ} \mathrm{~mol}$	

$\begin{aligned} & \text { Figure } 3 \text { shows how the partial pressures change with time at a constant } \\
& \text { temperature. }\end{aligned}$
Figure 3

| $\mathbf{0}$ | $\mathbf{6} .1$ | $\mathbf{1}$ Draw a cross (x) on the appropriate axis of Figure $\mathbf{3}$ when the mixture reaches |
| :--- | :--- | :--- | equilibrium.

| $\mathbf{0}$ | $\mathbf{6} .2$ | $\mathbf{2} 0.230 \mathrm{~mol}$ sample of carbon monoxide is mixed with hydrogen in a $1: 2 \mathrm{~mol}$ ratio and |
| :--- | :--- | :--- | allowed to reach equilibrium in a sealed flask at temperature T.

At equilibrium the mixture contains 0.120 mol of carbon monoxide.
The total pressure of this mixture is $1.04 \times 10^{4} \mathrm{kPa}$
Calculate the partial pressure, in kPa , of hydrogen in the equilibrium mixture.

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{3}$ Give an expression for the equilibrium constant $\left(K_{p}\right)$ for this reaction. |
| :--- | :--- | :--- | :--- |

State the units.
K_{p}

Units \qquad

| 0 | 6 | 4 | Some more carbon monoxide is added to the mixture in Question 06.2. The |
| :--- | :--- | :--- | :--- | new mixture is allowed to reach equilibrium at temperature T.

State the effect, if any, on the partial pressure of methanol and on the value of K_{p}

Effect on partial pressure of methanol \qquad
Effect on value of K_{p} \qquad

| 0 | 6 | $\mathbf{5}$ State the effect, if any, of the addition of a catalyst on the value of K_{p} for this |
| :--- | :--- | :--- | equilibrium.

Explain your answer.

Effect on value of K_{p} \qquad
Explanation \qquad
\qquad

Turn over for the next question

Question	Answers	Additional comments/Guidelines	Mark
06.1		X must be on or just below line of x axis	1
06.2	M1 Equilibrium $n\left(\mathrm{H}_{2}\right)=\underline{0.24}$ M2 Total number of moles $=\underline{0.47}$ M3 Mole fraction of $\mathrm{H}_{2}=0.51(1)$ or $\frac{0.24}{0.47}$ M4 Partial pressure of hydrogen $=5310$ or $5.31 \times 10^{3} \mathrm{kPa}$	M3 Allow mole fraction of $\mathrm{H}_{2}=\frac{\mathrm{M} 1}{\mathrm{M} 2}$ M4 Allow Partial pressure of hydrogen $=\mathrm{M} 3 \times 1.04 \times 10^{4}$	1 1 1 1

06.3	$\begin{aligned} & \text { M1 } K_{\mathrm{p}}=\frac{\mathrm{ppCH}_{3} \mathrm{OH}}{\mathrm{ppH}_{2}^{2} \times \mathrm{ppCO}} \text { OR } \frac{\mathrm{pCH}_{3} \mathrm{OH}}{\mathrm{pH}_{2}^{2} \times \mathrm{pCO}} \\ & \mathrm{~Pa}^{-2} \text { or } \mathrm{kPa}^{-2} \end{aligned}$	Do not allow square brackets Allow any pressure to power of ${ }^{-2}$	1 1
06.4	M1 Increases M2 No effect		1 1
06.5	M1 No effect M2 Increases rate of forward and backward reaction equally/by the same amount OR catalyst does not affect position of equilibrium	M2 Allow Catalyst does not appear in the K_{p} expression M2 Allow Only temperature affects Kp Ignore Catalysts increase the rate of reaction or rate at which equilibrium is reached	1 1

| $\mathbf{0}$ | $\mathbf{5}$ Ethanoic acid and ethane-1,2-diol react together to form the diester $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}\right)$ |
| :--- | :--- | as shown.

$$
2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{2}$ A small amount of catalyst was added to a mixture of 0.470 mol of l |
| :--- | :--- | :--- | :--- | ethanoic acid and 0.205 mol of ethane-1,2-diol.

The mixture was left to reach equilibrium at a constant temperature.
Complete Table 1.
Table 1

Amount in the mixture / mol				
	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$	$\mathrm{H}_{2} \mathrm{O}$
At the start	0.470	0.205	0	0
At equilibrium	0.180			

[3 marks]
Space for working

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{3}$	Write an expression for the equilibrium constant, K_{c}, for the reaction.

The total volume of the mixture does not need to be measured to allow a correct value for K_{c} to be calculated.

Justify this statement.
[2 marks]
Expression

Justification \qquad

| $\mathbf{0}$ | $\mathbf{5} .4$ | $\mathbf{4}$ A different mixture of ethanoic acid, ethane-1,2-diol and water was prepared |
| :--- | :--- | :--- | and left to reach equilibrium at a different temperature from the experiment in Question 5.2

The amounts present in the new equilibrium mixture are shown in Table 2.
Table 2

Amount in the mixture / mol					
	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$	$\mathrm{H}_{2} \mathrm{O}$	
At new equilibrium	To be calculated	0.264	0.802	1.15	

The value of K_{c} was 6.45 at this different temperature.
Use this value and the data in Table 2 to calculate the amount, in mol, of ethanoic acid present in the new equilibrium mixture.
Give your answer to the appropriate number of significant figures.
\qquad mol

Question	Answers	Mark	Additional Comments/Guidance

05.1 (

05.2	$\mathrm{Mol} \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$=6.00 \times 10^{-2}$ OR $0.06(00)$	1	
	$\mathrm{Mol} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$	$=1.45 \times 10^{-1}$ OR 0.145	1	
	Mol H O	$=2.90 \times 10^{-1} \quad$ OR $0.29(0)$	1	

\begin{tabular}{|c|c|c|c|}
\hline 05.3 \& \begin{tabular}{l}
\[
\left(K_{\mathrm{c}}=\right) \frac{[\text { ester }] \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]^{2} \times\left[\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]}
\] \\
The volume cancels out (Penalise a contradictory justification from expression if the volumes do not cancel out) OR there are equal no of moles on each side of the equation OR there are equal no of molecules on each side of the equation
\end{tabular} \& 1
1 \& Allow words for acid and alcohol \\
\hline 05.4 \& \begin{tabular}{l}
\(\left(\mathrm{Mol} \mathrm{CH}{ }_{3} \mathrm{COOH} / \mathrm{V}\right)^{2}=\frac{\left(8.02 \times 10^{-1} / V\right)(1.15 / V)^{2}}{6.45 \times\left(2.64 \times 10^{-1} / V\right)}\)
\[
\mathrm{Mol} \mathrm{CH} 33 \mathrm{COOH}=\sqrt{\frac{\left(8.02 \times 10^{-1}\right) \times(1.15)^{2}}{6.45 \times\left(2.64 \times 10^{-1}\right)}}=\sqrt{ } 0.623
\] \\
\(\mathrm{Mol} \mathrm{CH} 3 \mathrm{COOH}=0.789\) (must be 3 sfs) Allow \(0.788-0.790\)
\end{tabular} \& M1
M2

M3 \& | 0.789 scores 3 |
| :--- |
| Allow without V : $\quad\left(\mathrm{nCH}_{3} \mathrm{COOH}\right)^{2}=\frac{\left(8.02 \times 10^{-1}\right)(1.15)^{2}}{6.45 \times\left(2.64 \times 10^{-1}\right)}$ |
| If $\left(\mathrm{nCH}_{3} \mathrm{COOH}\right)^{2}=0.623$ then award M1 and M2 |
| If Kc is correct in 05.3 but incorrect rearrangement, then $C E=0$ except if upside down rearrangement then M3 only awarded for 1.27 |
| If Kc is incorrect in 05.3 then only M1 can be awarded for correct rearrangement. |

\hline
\end{tabular}

| Total | 9 |
| :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{4} \quad$ Compounds \mathbf{A} and \mathbf{B} react together to form an equilibrium mixture containing |
| :--- | :--- | compounds \mathbf{C} and \mathbf{D} according to the equation

$$
2 \mathbf{A}+\mathbf{B} \rightleftharpoons 3 \mathbf{C}+\mathbf{D}
$$

| 0 | 4 | 1 |
| :--- | :--- | :--- | A beaker contained $40 \mathrm{~cm}^{3}$ of a $0.16 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of \mathbf{A}. $9.5 \times 10^{-3} \mathrm{~mol}$ of \mathbf{B} and $2.8 \times 10^{-2} \mathrm{~mol}$ of \mathbf{C} were added to the beaker and the mixture was left to reach equilibrium.

The equilibrium mixture formed contained $3.9 \times 10^{-3} \mathrm{~mol}$ of \mathbf{A}.
Calculate the amounts, in moles, of \mathbf{B}, \mathbf{C} and \mathbf{D} in the equilibrium mixture.

Amount of D mol

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{2}$ Give the expression for the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this equilibrium and its units. |
| :--- | :--- | :--- | [2 marks]

$K_{\text {c }}$

Units \qquad

| $\mathbf{0}$ | $\mathbf{4} .3$ A different equilibrium mixture of these four compounds, at a different temperature, |
| :--- | :--- | :--- | contained 0.21 mol of $\mathbf{B}, 1.05 \mathrm{~mol}$ of \mathbf{C} and 0.076 mol of \mathbf{D} in a total volume of $5.00 \times 10^{2} \mathrm{~cm}^{3}$ of solution.

At this temperature the numerical value of K_{c} was 116
Calculate the concentration of \mathbf{A}, in $\mathrm{mol} \mathrm{dm}^{-3}$, in this equilibrium mixture. Give your answer to the appropriate number of significant figures.

| 0 | $\mathbf{4}$ | $\mathbf{4}$ Justify the statement that adding more water to the equilibrium mixture in |
| :--- | :--- | :--- | Question 04.3 will lower the amount of \mathbf{A} in the mixture.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question	Answers	Mark	Additional Comments/Guidance
04.1	Initial amount of $A=6.4 \times 10^{-3}$ $\begin{aligned} & \text { Equ } \mathrm{A}=6.4 \times 10^{-3}-2 \mathrm{x} \quad \therefore \mathrm{x}=1.25 \times 10^{-3} \\ & \mathrm{~B}=9.5 \times 10^{-3}-\mathrm{x}=8.25 \times 10^{-3} \\ & \mathrm{C}=2.8 \times 10^{-2}+3 \mathrm{x}=0.0318 \\ & \mathrm{D}=\mathrm{x}=1.25 \times 10^{-3} \end{aligned}$	M1 M2 M3 M4 M5	If M1 wrong can score max 3 If incorrect x can score $\max 3$ Allow 2 or more sig figs
04.2	$\begin{aligned} & K_{\mathrm{c}}=\frac{[C]^{3}[D]}{[A]^{2}[B]} \\ & \text { Units }=\mathrm{mol} \mathrm{dm}^{-3} \end{aligned}$	1 1	Penalise () but mark on in $4.2 \& 4.3$ If K_{c} wrong no mark for units
04.3 Can see 4.2	M1 for correct rearrangement $[A]^{2}=\frac{[C]^{3}[D]}{K_{c}[B]}$ or $[A]=\sqrt{ } \frac{[C]^{3}[D]}{K_{c}[B]}$ M2 for division of mol of B, C and D by correct volume $[A]^{2}=\frac{\left.\left[^{1.05]} / 0.5^{3}\right]^{3.076} / 0.5\right]}{116 \times\left[^{0.21 / 0.5}\right]} \text { or } 0.0289 \text { or } 0.0290$ M3 for final answer: $[\mathrm{A}]=\underline{0.17}$ (must be 2 sfs)	M1 M2 M3	If K_{c} wrong in 4.2 can score 1 for dividing by correct volume If K_{c} correct but incorrect rearrangement can score 1 for dividing by correct volume
04.4	(All) conc fall: (ignore dilution) Equm moves to side with more moles To oppose the decrease in conc	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OR $K_{\mathrm{c}}=$ mole ratio $\times 1 / \mathrm{V}$ If vol increases, mole ratio must increase To keep K_{c} constant If only conc of A falls $C E=0$ If pressure falls $\mathrm{CE}=0$
Total		13	

$\mathbf{0}$	$\mathbf{9}$
\mathbf{A} and \mathbf{B} react together to form an equilibrium mixture..$~$	

$$
\mathrm{A}(\mathrm{aq})+2 \mathrm{~B}(\mathrm{aq}) \rightleftharpoons \mathrm{C}(\mathrm{aq})
$$

An aqueous solution containing 0.25 mol of \mathbf{A} is added to an aqueous solution containing 0.25 mol of \mathbf{B}.

When equilibrium is reached, the mixture contains 0.015 mol of \mathbf{C}.

\qquad mol

Amount of B \qquad mol

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{2}$ At a different temperature, another equilibrium mixture contains 0.30 mol of \mathbf{A}, |
| :--- | :--- | :--- | :--- | 0.25 mol of \mathbf{B} and 0.020 mol of \mathbf{C} in $350 \mathrm{~cm}^{3}$ of solution.

Calculate the value of the equilibrium constant K_{c}
Deduce the units of K_{c}
K_{c} \qquad
Units \qquad

When an excess of water is added to chloroethanal, an equilibrium mixture is formed.

$$
\mathrm{ClCH}_{2} \mathrm{CHO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}(\mathrm{aq})
$$

An expression for an equilibrium constant (K) for the reaction under these conditions is

$$
K=\frac{\left[\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}\right]}{\left[\mathrm{ClCH}_{2} \mathrm{CHO}\right]}
$$

\qquad
\qquad
\qquad
 solution. The mixture is allowed to reach equilibrium.

The value of the equilibrium constant (K) is 37.0
Calculate the equilibrium concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of $\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
\qquad $\mathrm{mol} \mathrm{dm}^{-3}$

Question	Answers	Additional comments/Guidelines	Mark
09.1	M1 EQM amount $A=0.25-0.015=0.235 \mathrm{~mol}$ M2 EQM amount $B=0.25-(2 \times 0.015)=0.22 \mathrm{~mol}$	Allow 0.24 mol for M1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
09.2	$\begin{array}{lll} \hline \text { M1 } & & {[\mathrm{C}]} \\ & K_{\mathrm{C}}= & {[\mathrm{A}][\mathrm{B}]^{2}} \end{array}$		1
	M2 $\frac{\frac{0.02}{0.35}}{\frac{0.30}{0.35} \times\left(\frac{0.25}{0.35}\right)^{2}}$	Correct insertion of numbers and use of volume Allow ecf from their K_{c} Scores M1 here (even if volume not used)	1
	$\text { M3 }=0.13$ Units $\mathrm{mol}^{-2} \mathrm{dm}^{6}$	$\mathrm{Kc}=1.067$ if vol not used Max 3 $\mathrm{Kc}=7.63$ if expression upside down Max 3 Allow answers using cm^{3} and then the corresponding units i.e. $1.31 \times 10^{5} \mathrm{~mol}^{-2} \mathrm{~cm}^{6}$ Allow conseq units to wrong K_{c}	1 1

09.3

$$
\left[\mathrm{H}_{2} \mathrm{O}\right] / \text { conc of water is (effectively) constant (because it it so much }
$$ 1

09.4	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	Initial amount $\mathrm{ClCH}_{2} \mathrm{CHO}=4.71 / 78.5=0.06 \mathrm{~mol}$ EQM amount $\mathrm{ClCH}_{2} \mathrm{CHO}=(0.06-\mathrm{x}) \mathrm{mol}$ EQM amount $\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}=x \mathrm{~mol}$	Calculates initial mol Sets up algebraic expressions for EQM mol of both If no M2 can only score M3 and M5 conseq leads to $44.4 \mathrm{~mol} \mathrm{dm}^{-3}$ via $\left[\mathrm{ClCH}_{2} \mathrm{CHO}\right]=\frac{0.06}{0.05}$	
	M3	$37=\frac{\frac{x}{V}}{\frac{(0.06-x)}{V}}$	Inserts into K Does not need to show V as it cancels but allow expressions that do show V and subsequent calculations	1
	M4 M5	$\begin{aligned} & 37(0.06-x)=x \\ & 2.22=38 x \\ & x=0.058421 \end{aligned}$ $\left[\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}\right]=\frac{0.058421}{0.05}=1.17 \mathrm{~mol} \mathrm{dm}^{-3}$	Solve for x Calculate concentration	1 1

0	5	This question is about the equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$		
0	5.1	State and explain the effect, if any, of a decrease in overall pressure on the equilibrium yield of SO_{3}
		Effect
		Explanation

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | .2 |
| :--- | :--- | :--- | A 0.460 mol sample of SO_{2} is mixed with a 0.250 mol sample of O_{2} in a sealed container at a constant temperature.

When equilibrium is reached at a pressure of 215 kPa , the mixture contains 0.180 mol of SO_{3}

Calculate the partial pressure, in kPa , of SO_{2} in this equilibrium mixture.
\qquad kPa

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{3}$	A different mixture of SO_{2} and O_{2} reaches equilibrium at a different temperature.

Table 4 shows the partial pressures of the gases at equilibrium.
Table 4

Gas	Partial pressure $/ \mathbf{k P a}$
SO_{2}	1.67×10^{2}
O_{2}	1.02×10^{2}
SO_{3}	1.85×10^{2}

Give an expression for the equilibrium constant (K_{p}) for this reaction.
Calculate the value of the equilibrium constant for this reaction and give its units.
K_{p}
K_{p} \qquad
Units \qquad

| $\mathbf{0}$ | $\mathbf{5} .4$ What is the effect on the value of K_{p} if the pressure of this equilibrium mixture is |
| :--- | :--- | :--- | increased at a constant temperature?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Tick (\checkmark) one box.
The value of K_{p}
increases

stays the same.

decreases.

Turn over for the next question

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/1 - JUNE 2021

Question	Answers	Additional comments/Guidelines	Mark
05.1	M1 decreases yield M2 So equilibrium shifts to side with more moles/molecules or more moles/molecules on LHS M3 So equilibrium shifts (to left side) to oppose decrease in pressure OR to increase pressure	Allow M2 independent of M1 Must refer to equilibrium shifting to gain maximum marks	1

Question	Answers	Additional comments/Guidelines	Mark
	M 1 amount $\mathrm{SO}_{2}(=0.46-0.18)=0.28 \mathrm{~mol}$		1
05.2	M 2 amount $\mathrm{O}_{2}(=0.25-0.09)=0.16 \mathrm{~mol}$		1
	M 3 total amount $(=0.28+0.16+0.18)=\underline{0.62} \mathrm{~mol}$	$\mathrm{M} 4=\frac{M 1}{M 3} \times 215$	1
	M 4 partial pressure of $\mathrm{SO}_{2}=\underline{0.28} \times 215=97(.1)(\mathrm{kPa})$		1

Question	Answers	Additional comments/Guidelines	Mark
05.3	$\mathrm{M} 1 K_{\mathrm{p}}=\frac{\left(\mathrm{pp} \mathrm{SO}_{3}\right)^{2}}{\left.(\mathrm{pp} \mathrm{SO})^{2}\right)^{2} \mathrm{pp} \mathrm{O}_{2}}$	Penalise square brackets in M 1	1
	$\mathrm{M} 2=1.2(0) \times 10^{-2}$		1
		1	

Question	Answers	Additional comments/Guidelines	Mark
05.4	Stays the same		1

Question 1 continues on the next page

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

0.430 mol of carbon monoxide is mixed with 0.860 mol of hydrogen.

At equilibrium, the total pressure in the flask is 250 kPa and the mixture contains 0.110 mol of methanol.

Calculate the amount, in moles, of carbon monoxide present at equilibrium.
Calculate the partial pressure, in kPa , of carbon monoxide in this equilibrium mixture.

Amount of carbon monoxide \qquad mol

Partial pressure \qquad kPa

0	1	4	Give an expression for the equilibrium constant $\left(K_{p}\right)$ for this reaction.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

K_{p}

| 0 | 1 | $\mathbf{5}$ | A different mixture of carbon monoxide and hydrogen is left to reach equilibrium at a |
| :--- | :--- | :--- | :--- | temperature T.

Some data for this equilibrium are shown in Table 1.

Table 1

Partial pressure of $\mathbf{C O}$	125 kPa
Partial pressure of $\mathrm{CH}_{3} \mathbf{O H}$	5.45 kPa
$\boldsymbol{K}_{\mathrm{p}}$	$1.15 \times 10^{-6} \mathrm{kPa}^{-2}$

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Calculate the partial pressure, in kPa , of hydrogen in this equilibrium mixture.
\qquad kPa

| 0 | 1 | 6 |
| :--- | :--- | :--- | temperature T.

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

Give the units for K_{p}

Question	Answers	Additional Comments/Guidelines	Mark
01.1	forward and reverse reactions proceed at equal rates concentrations (of reactants and products) remain constant or concentrations (of reactants and products) stay the same	allow answers in either order do not accept equal concentrations do not accept concentrations are the same ignore closed system	$\begin{gathered} 1 \\ 1 \\ \text { AO1 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
01.2	more moles of (gaseous) products (than (gaseous) reactants) or more moles on the RHS (than LHS)	allow molecules do not accept atoms	$\stackrel{1}{\text { AO3 }}$

Question	Answers	Additional Comments/Guidelines	Mark
01.3	M1 (at equilibrium) $\mathrm{n}(\mathrm{CO})=0.32(\mathrm{~mol})$ M2 total number of moles (at equilibrium) $=1.07$ (mol) or mole fraction $(C O)=0.299$ $\mathrm{M} 3 \mathrm{p}(\mathrm{CO})\left(=\frac{0.320 \times 250}{1.07}\right)=74.8(\mathrm{kPa})$	$M 3=\frac{M 1 \times 250}{M 2}$ allow 75 (kPa) an answer of $67.8(\mathrm{kPa})=\mathbf{2}$ marks max	

Question	Answers	Additional Comments/Guidelines	Mark
01.4	$K_{p}=\frac{p\left(\mathrm{CH}_{3} \mathrm{OH}\right)}{p\left(\mathrm{H}_{2}\right)^{2} p(\mathrm{CO})}$	do not accept square brackets	

Question	Answers	Additional Comments/Guidelines	Mark
01.5	M1 $\mathrm{p}\left(\mathrm{H}_{2}\right)^{2}=\frac{\mathrm{p}\left(\mathrm{CH}_{3} \mathrm{OH}\right)}{K_{\mathrm{p}} \times \mathrm{p}(\mathrm{CO})}$ or $\frac{5.45}{1.15 \times 10^{-6} \times 125}$ M2 $\mathrm{p}\left(\mathrm{H}_{2}\right)=\sqrt{37913}$ or $\mathrm{p}\left(\mathrm{H}_{2}\right)^{2}=37913$ M3 $\mathrm{p}\left(\mathrm{H}_{2}\right)=194.7(\mathrm{kPa})$	rearrangement with or without numbers $\begin{aligned} & \text { M3 }=\sqrt{\text { M2 }} \\ & \text { allow } 195(\mathrm{kPa}) \end{aligned}$ if rearrangement incorrect in M1 allow M3 only if $p\left(\mathrm{H}_{2}\right)$ is not squared in Question $\mathbf{0 1 . 4}$ allow $p\left(\mathrm{H}_{2}\right)=\frac{\mathrm{p}\left(\mathrm{CH}_{3} \mathrm{OH}\right)}{K_{\mathrm{p}} \times \mathrm{p}(\mathrm{CO})}$ for M 1 and 37913 for M 2 (max 2)	$\begin{gathered} 1 \\ 1 \\ \text { AO2 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark

| 01.6 | $=\left(\frac{1}{1.15 \times 10^{-6}}\right)=8.7(0) \times 10^{5}$ | |
| :---: | :--- | :--- | :---: |
| kPa^{2} | allow 869565 | 1 |

| $\mathbf{0}$ | 5 |
| :--- | :--- | This question is about equilibrium.

| $\mathbf{0}$ | $\mathbf{5} .1$ |
| :--- | :--- | :--- | presence of a small amount of catalyst.

The mixture is left to reach equilibrium at a constant temperature.

$$
\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}(\mathrm{I})
$$

At equilibrium, x mol of ethanoic acid are present in the mixture.
Complete Table 2 by deducing the amounts, in terms of x, of the diester, water and diol present in the equilibrium mixture.

Table 2

Amount in the mixture / mol					
	Diester	Water	Acid	Diol	
At the start	1	1	0	0	
At equilibrium			x		

$\begin{array}{lllll}0 & 5 & 2 & \text { Deduce the structure of the diester in Question } 05.1\end{array}$

| 0 | $\mathbf{5}$ | $\mathbf{3}$ | A new equilibrium mixture of the substances from Question 05.1 is prepared at a |
| :--- | :--- | :--- | :--- | different temperature.

$$
\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}(\mathrm{I})
$$

Table 3 shows the amount of each substance in this new equilibrium mixture.
Table 3

Amount in the mixture / mol				
	Diester	Water	Acid	Diol
At equilibrium	0.971	To be calculated	0.452	0.273

The value of the equilibrium constant, K_{c} is 0.161 at this temperature.
Calculate the amount of water, in mol, in this new equilibrium mixture. Show your working.

Question	Answers	Additional Comments/Guidelines	Mark
05.1	Amount Diester $=1-\frac{x}{2}$ Amount Water $=1-X$ Amount Diol $=\frac{x}{2}$		M1 M2 M3
Question	Answers	Additional Comments/Guidelines	Mark
05.2		Allow other versions of the structure (abbreviated or displayed)	1
Question	Answers	Additional Comments/Guidelines	Mark
05.3	$K_{\mathrm{c}}=\frac{0.452^{2} \times 0.273}{0.971 \times\left(\mathrm{amount} \mathrm{H}_{2} \mathrm{O}\right)^{2}}$ or [acid] ${ }^{2} \times$ [diol] [diester] $\times\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$ $\left(\text { Amount } \mathrm{H}_{2} \mathrm{O}\right)^{2}=\frac{0.452^{2} \times 0.273}{0.161 \times 0.971}$ or $\frac{\left[\text { acid] }{ }^{2} \times[\text { diol] }\right.}{\left[\text { diester] } \times \mathrm{K}_{\mathrm{c}}\right.}=(0.357)$ Amount $\mathrm{H}_{2} \mathrm{O}=\sqrt{0.357}=0.597 \mathrm{~mol}$	OR $\mathrm{K}_{\mathrm{c}}=\frac{\left(\frac{0.452}{\nu}\right)^{2} \times\left(\frac{0.273}{V}\right)}{\left(\frac{0.971}{\Sigma}\right)\left(\frac{\text { amount } \mathrm{H} 2 \mathrm{O}}{\Sigma}\right)^{2}}$	M1 M2 M3

| $\mathbf{0}$ | 2 |
| :--- | :--- | Tetrafluoroethene is made from chlorodifluoromethane in this reversible reaction.

$$
2 \mathrm{CHClF}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{~F}_{4}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g}) \quad \Delta H=+128 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

A 2.00 mol sample of CHCLF_{2} is placed in a container of volume $23.2 \mathrm{dm}^{3}$ and heated. When equilibrium is reached, the mixture contains 0.270 mol of CHClF_{2}

0	2	1

[2 marks]

Amount of $\mathrm{C}_{2} \mathrm{~F}_{4}$ \qquad mol

Amount of HCl \qquad mol

0	2	2	Give an expression for K_{c} for this equilibrium.

K_{c}

\section*{| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Calculate a value for K_{c} |
| :--- | :--- | :--- | :--- |}

Give its units.
K_{c} \qquad Units

| 0 | $\mathbf{2}$. | $\mathbf{4}$ State and explain the effect of using a higher temperature on the equilibrium yield of |
| :--- | :--- | :--- | :--- | tetrafluoroethene.

Effect on yield \qquad
Explanation
\qquad
\qquad
\qquad
\qquad

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{5}$ Chemists provided evidence that was used to support a ban on the use of |
| :--- | :--- | :--- | :--- | chlorodifluoromethane as a refrigerant.

Many refrigerators now use pentane as a refrigerant.
State the environmental problem that chlorodifluoromethane can cause.
Give one reason why pentane does not cause this problem.

Environmental problem \qquad
Environment problem

Reason why pentane does not cause this problem \qquad
\qquad
\qquad

Question	Answers	Additional Comments/Guidelines	Mark
	$\mathrm{C}_{2} \mathrm{~F}_{4}=0.865 \mathrm{~mol}$	Award 1 mark if $\mathrm{HCl}=2 \times \mathrm{C}_{2} \mathrm{~F}_{4}$	M1
02.1	$\mathrm{HCl}=1.73 \mathrm{~mol}$		$\begin{gathered} \mathrm{M} 2 \\ (2 \times \mathrm{AO} 2) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
02.2 $K_{\mathrm{c}}=\frac{\left[\mathrm{C}_{2} \mathrm{~F}_{4}\right][\mathrm{HCl}]^{2}}{[\mathrm{CHClF}]^{2}}$ Penalise round brackets 1 (AO2)			

Question	Answers	Additional Comments/Guidelines	Mark
	$K_{\mathrm{c}}=\frac{[0.865 / 23.2][1.73 / 23.2]^{2}}{[0.27 / 23.2]^{2}}$	Allow ecf for use of their answer(s) to Q2.1 and Q2. 2 M1 for dividing by volume	M1
02.3	$K_{\mathrm{c}}=1.5(3)$ must be at least 2sf Allow 1.53-1.54 Units $=\mathrm{mol} \mathrm{dm}^{-3}$	If no use of volume allow M2 for 35.5 If upside down can allow all 3 marks as ECF to Q2. 2 Leads to an answer of $0.65(3) \mathrm{mol}^{-1} \mathrm{dm}^{3}$	$\begin{gathered} \mathrm{M} 2 \\ \mathrm{M} 3 \\ (3 \times \mathrm{AO} 2) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
02.4	Yield would increase Equilibrium opposes temperature increase Moves in the endothermic direction	Shifts /moves to reduce temperature Ignore favours	$\begin{gathered} \text { M1 } \\ \text { M2 } \\ \text { M3 } \\ (3 \times \text { AO2 }) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
02.5	Causes ozone depletion/decomposition/damage Pentane does not have $\mathrm{C}-\mathrm{Cl}$ bonds	Accept hole in the ozone layer Accept does not produce Cl radicals Accept does not contain chlorine	$\begin{gathered} \text { M1 } \\ \text { M2 } \\ (2 \times \mathrm{AO} 1) \end{gathered}$

