Unit 13: Isomerism, Aldehydes, Ketones etc.

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

| $\mathbf{0}$ | $\mathbf{4} \quad$ The aldehyde $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ reacts with KCN followed by dilute acid to |
| :--- | :--- | form a racemic mixture of the two stereoisomers of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$ Give the IUPAC name of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$

\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2}$ Describe how you would distinguish between separate samples of the two |
| :--- | :--- | :--- | :--- | stereoisomers of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$

[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{4}$ An isomer of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ reacts with KCN followed by dilute acid to |
| :--- | :--- | :--- | :--- | form a compound that does not show stereoisomerism.

Draw the structure of the compound formed and justify why it does not show stereoisomerism.

Structure

Justification

Turn over for the next question

Question	Answers	Mark	Additional Comments/Guidance
04.1	2-hydroxyhexanenitrile	1	
04.2	(Plane) polarised light Enantiomers would rotate light in opposite directions	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	not different alone
04.3	planar carbonyl group or planar Attack from either side With equal probability OR produces equal amounts (of the two isomers/enantiomers)	1 1 1	Not planar molecule, not planar bond, not planar $\mathrm{C}=\mathrm{O}$

04.4	 Does not contain a chiral centre OR does not contain C attached to 4 different groups OR contains two identical/ethyl groups OR symmetrical (product)		Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ or skeletal		
		1			
			1		
		1	\|		
			N		
			M 2 dependent on correct $\mathrm{M} 1($ No structure $=0)$		
			If pentan-3-one drawn then allow symmetrical ketone for M2		

| Total | 8 | |
| :--- | :--- | :--- | :--- |

1	3	Aqueous NaBH_{4} reduces aldehydes but does not reduce alkenes.

| 1 | $\mathbf{3}$. | $\mathbf{1}$ Show the first step of the mechanism of the reaction between NaBH_{4} and |
| :--- | :--- | :--- | 2-methylbutanal.

You should include two curly arrows.
Explain why NaBH_{4} reduces 2-methylbutanal but has no reaction with 2-methylbut-1-ene.

First step of mechanism

Explanation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 1 | $\mathbf{3}$. | $\mathbf{2}$ A student attempted to reduce a sample of 2-methylbutanal but added |
| :--- | :--- | :--- | insufficient NaBH_{4}

The student confirmed that the reduction was incomplete by using a chemical test.

Give the reagent and observation for the chemical test.

Reagent \qquad
\qquad
Observation \qquad
\qquad

END OF QUESTIONS

Question	Answers	Additional Comments/Guidelines	Mark
13.1	M1 for structure of 2-methylbutanal M2 for $\mathbf{2}$ curly arrows and lp on hydride, i.e. Explanation: M3 H^{-}ion / nucleophile is attracted to $\delta+\mathrm{C}$ M4 electron rich $\mathrm{C}=\mathrm{C}$ M5 H^{-}ion / nucleophile is repelled by $\mathrm{C}=\mathrm{C}$ OR $\mathrm{C}=\mathrm{C}$ only attacked by/reacts with electrophiles	Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ OR Penalise M2 for wrong partial charges on $\mathrm{C}=\mathrm{O}$ Ignore product	1 1 1 1 1

13.2	Tollens' (reagent) OR ammoniacal silver nitrate OR description of making Tollens' Silver mirror/ppt OR black solid / precipitate / deposit	Fehling's/ Benedict's (solutions)	NOT dichromate For Tollens' reagent: for M1 ignore either AgNO_{3} or $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]$or "the silver mirror test" on their own, or "Tolling's reagent", but mark on	1
		red solid / precipitate (allow orange or brown)	For Fehling's/Benedict's solution: for $\mathbf{M 1}$ Ignore $\mathrm{Cu}^{2+}(\mathrm{aq})$ or CuSO_{4} or "Fellings" on their own, but mark on	1

| 0 | 2 |
| :--- | :--- |\quad Prilocaine is used as an anaesthetic in dentistry.

Figure 3 shows the structure of prilocaine.
Figure 3

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$

0	2	2
2		

Tick (\checkmark) the box(es) corresponding to the functional group(s).

Amide	Amine	Ester	Ketone

$\begin{array}{llll}\mathbf{0} & \mathbf{2} . & 3 & \text { Prilocaine is completely hydrolysed in the human body to give a mixture of products. }\end{array}$
Draw the structures of the two organic products formed in the complete hydrolysis of prilocaine in acidic conditions.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{4}$

Figure 4

Isomer F

Isomer G

Isomer \mathbf{F} is the active compound in the medicine ibuprofen.
In the manufacture of ibuprofen both isomers \mathbf{F} and \mathbf{G} are formed. An enzyme is then used to bind to isomer \mathbf{G} and catalyse its hydrolysis.

After the products of hydrolysis of \mathbf{G} are removed, a pure sample of isomer \mathbf{F} is collected.

Explain how a structural feature of this enzyme enables it to catalyse the hydrolysis of isomer \mathbf{G} but not the hydrolysis of isomer \mathbf{F}.
[2 marks]
\qquad
\qquad
\qquad

Turn over for the next question

Question	Answers	Additional comments/Guidelines	Mark
02.1	One circled C atom only - The C attached to $\mathrm{CH}_{3} / \mathrm{C}=\mathrm{O} / \mathrm{H}$ and NH		1
02.2	Two ticks only for amine and amide		1
02.3		M1 for choosing the correct bond to hydrolyse M2 and M3 for the correct structures of the products Allow protonated amino acid for M2 Allow $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$or + outside a square bracket	3
MARK SCHEME - A-LEVEL CHEMISTRY - 7405/2 - JUNE 2020			
02.4	M1 Enzyme has an active site M2 The G-Enantiomer / Enzyme has the correct stereo chemistry / stereospecific Or The G-Enantiomer / Enzyme has the complementary shape	For M2 allow opposite argument for F-Enantiomer	1 1

Coconut oil contains a triester with three identical R groups.
This triester reacts with potassium hydroxide.

Type of compound
Use
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | B | A 1.450 g sample of coconut oil is heated with 0.421 g of KOH in aqueous ethanol |
| :--- | :--- | :--- | :--- | until all of the triester is hydrolysed.

The mixture is cooled.
The remaining KOH is neutralised by exactly $15.65 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
Calculate the percentage by mass of the triester ($M_{\mathrm{r}}=638.0$) in the coconut oil.
\qquad

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{4}$ Suggest why aqueous ethanol is a suitable solvent when heating the coconut oil |
| :--- | :--- | :--- | with KOH .

Give a safety precaution used when heating the mixture.
Justify your choice.

Reason \qquad

Safety precaution \qquad
\qquad
Justification \qquad

Question	Answers	Additional Comments/Guidelines	Mark
01.1	$\mathrm{CH}_{2} \mathrm{OHCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$		1
	(Potassium) Carboxylate salt	Allow fatty acid salt / salt Salt of a carboxylic acid	1
	Soap	Allow detergent / surfactant	1

Question	Answers	Additional Comments/Guidelines	Mark
01.2 $638=173+3(15+14 \mathrm{n})$ M_{r} ester fragment $=173$ Show substract $638-(M 1+45)$ Division of M2 by 42 $n=10$ M1	M2		

Question	Answers	Additional Comments/Guidelines	Mark

	Amount $\mathrm{HCl}=0.100 \times 0.01565=1.565 \times 10^{-3} \mathrm{~mol}$		M1
	Initial amount $\mathrm{KOH}=\frac{0.421}{56.1}=7.50 \times 10^{-3} \mathrm{~mol}$		M2
Amount KOH used $=\mathrm{M} 2-\mathrm{M} 1=5.939 \times 10^{-3} \mathrm{~mol}$		M3	
	Amount ester $=\frac{5.935 \times 10^{-3}}{3}=1.980 \times 10^{-3} \mathrm{~mol}(\mathrm{M} 3 / 3)$		M4
	Mass ester $=\left(1.980 \times 10^{-3}\right) \times 638=1.263 \mathrm{~g}(\mathrm{M} 4 \times 638)$	Allow 87.0 to 87.1 Allow 2 sf Don't allow M6 for an answer $>100 \%$	M5
	\%age by mass $=\frac{1.263}{1.45} \times 100=87.1 \%((\mathrm{M} 5 / 1.45) \times 100)$	M6	

Question	Answers	Additional Comments/Guidelines	Mark
01.4	Allow to dissolve both oil and KOH	To act as a mutual solvent OR To ensure reactants are miscible	M1
	Precaution must be linked to heating e.g. Use a water bath for heating mixture	Allow electrical heater / mantle Allow sand bath	M2
	Prevents risk of fire / Ethanol is flammable	Allow KOH is corrosive/caustic/damages eyes if matches alternative precaution given	M3

 dilute acid.

Name of mechanism

Outline of mechanism

Question	Answers	Additional Comments/Guidelines	Mark
01.8	Nucleophilic Addition M2 arrow from lone pair to C of $\mathrm{C}=\mathrm{O}$	ALLOW negative charge anywhere on cyanide But attacking lone pair must be on C Do not award M3 without attempt of M2 Allow M2 for attack to a positive carbon following breaking of $\mathrm{C}=\mathrm{O}$ Penalise covalent KCN in M2 M3 ignore partial charges unless wrong Penalise M3 for incorrect connection between CN and C NB Allow fully displayed or other structural formulae	$\begin{gathered} M 1 \\ M 2 \\ M 3 \\ M 4 \\ M 5 \\ (1 \times A O 1, \\ 4 \times A O 2) \end{gathered}$

$\mathbf{0}$	$\mathbf{7}$	This question is about esters.

Figure 4 shows an incomplete mechanism for the reaction of an ester with aqueous sodium hydroxide.

Figure 4

step 2
\longrightarrow

step 3
$\mathrm{CH}_{3} \mathrm{OH}$

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$	Add three curly arrows to complete the mechanism in Figure 4.

| 0 | $\mathbf{7}$ | 2 |
| :--- | :--- | :--- | Name the type of reaction shown in Figure 4.

\qquad

0	7	3	Deduce the role of the $\mathrm{CH}_{3} \mathrm{O}^{-}$ion in step 3 shown in Figure 4.

\qquad

0	$\mathbf{7} .4$	A triester in vegetable oil reacts with sodium hydroxide in a similar way.

Give a use for a product of this reaction.
[1 mark]
\qquad

Question	Answers	Additional Comments/Guidelines	Mark
07.1		M1: Arrow from $\mathrm{C}=\mathrm{O}$ bond to O M2 Arrow from correct C-O bond to O M3 Arrow from O-H bond to O	$\begin{gathered} 3 \\ (3 \times \mathrm{AO} 3) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
07.2	(Alkaline/base) hydrolysis		$\begin{gathered} 1 \\ (\mathrm{AO} 1) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
07.3	Base	Allow proton acceptor Ignore ref to Bronsted Lowry	$\begin{gathered} 1 \\ (\mathrm{AO} 1) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
07.4 Soap only 1	(AO1)		

$\mathbf{0}$	$\mathbf{9} \quad$ This question is about olive oil.

A sample of olive oil is mainly the unsaturated fat \mathbf{Y} mixed with a small amount of inert impurity.

The structure of \mathbf{Y} in the olive oil is shown.
Y has the molecular formula $\mathrm{C}_{57} \mathrm{H}_{100} \mathrm{O}_{6}\left(M_{\mathrm{r}}=880\right)$.

The amount of \mathbf{Y} is found by measuring how much bromine water is decolourised by a sample of oil, using this method.

- Transfer a weighed sample of oil to a $250 \mathrm{~cm}^{3}$ volumetric flask and make up to the mark with an inert organic solvent.
- Titrate $25.0 \mathrm{~cm}^{3}$ samples of the olive oil solution with $0.025 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Br}_{2}(\mathrm{aq})$.

| $\mathbf{0}$ | $\mathbf{9} .1$ | A suitable target titre for the titration is $30.0 \mathrm{~cm}^{3}$ of $0.025 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Br}_{2}(\mathrm{aq})$. |
| :--- | :--- | :--- | Justify why a much smaller target titre would not be appropriate.

Calculate the amount, in moles, of bromine in the target titre.

Justification \qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{2}$ Calculate a suitable mass of olive oil to transfer to the volumetric flask using your |
| :--- | :--- | :--- | :--- | answer to Question 09.1 and the structure of \mathbf{Y}.

Assume that the olive oil contains 85% of \mathbf{Y} by mass.
(If you were unable to calculate the amount of bromine in the target titre, you should assume it is $6.25 \times 10^{-4} \mathrm{~mol}$. This is not the correct amount.)

	The olive oil solution can be prepared using this method. - Place a weighing bottle on a balance and record the mass, in g, to 2 decimal places. - Add olive oil to the weighing bottle until a suitable mass has been added. - Record the mass of the weighing bottle and olive oil. - Pour the olive oil into a $250 \mathrm{~cm}^{3}$ volumetric flask. - Add organic solvent to the volumetric flask until it is made up to the mark. - Place a stopper in the flask and invert the flask several times.
0 9	Suggest an extra step to ensure that the mass of olive oil in the solution is recorded accurately.
	Justify your suggestion. [2 marks]
	Extra step
	Justification

| $\mathbf{0}$ | $\mathbf{9} .4$ State the reason for inverting the flask several times. |
| :--- | :--- | :--- |

\qquad
\qquad
\qquad

| 0 | $\mathbf{9}$ | $\mathbf{5}$ A sample of the olive oil was dissolved in methanol and placed in a |
| :--- | :--- | :--- | :--- | mass spectrometer. The sample was ionised using electrospray ionisation.

Each molecule gained a hydrogen ion $\left(\mathrm{H}^{+}\right)$during ionisation.
The spectrum showed a peak for an ion with $\frac{m}{z}=345$ formed from an impurity in the olive oil.
The ion with $\frac{m}{z}=345$ was formed from a compound with the empirical formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$

Deduce the molecular formula of this compound.
Show your working.

Molecular formula

Question	Answers	Additional Comments/Guidelines	Mark
09.1	Smaller titre will increase (\%) uncertainty / error		1
	amount $\mathrm{Br}_{2}=0.025 \times 30 / 1000=7.5 \times 10^{-4} \mathrm{~mol}$	Or 0.00075	$\begin{gathered} \stackrel{1}{(2 \times \mathrm{AO} 3}) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark

09.2	$\begin{array}{\|l} \text { Ratio } \mathrm{Y} \text { :bromine } \\ \text { M1 } 1: 5 \end{array}$	Alternative calc using supplied answer	M1
	$\mathrm{M} 2 \mathrm{n} \mathrm{Y} \text { in } 25 \mathrm{~cm}^{3} \text { oil }=\frac{7.5 \times 10^{-4}}{5}=1.5 \times 10^{-4}$ If no ratio must state n Y for M2	$n Y \text { in } 25 \mathrm{~cm}^{3} \text { oil }=\frac{6.25 \times 10^{-4}}{5}=1.25 \times 10^{-4}$	M2
	M 3 nY in $250 \mathrm{~cm}^{3}=\mathrm{M} 2 \times 10=\left(1.5 \times 10^{-3}\right)$	$\mathrm{n} Y$ in $250 \mathrm{~cm}^{3}=1.25 \times 10^{-4} \times 10=\left(1.25 \times 10^{-3}\right)$	M3
	M4 Mass $=\mathrm{M} 3 \times 880=(1.32 \mathrm{~g})$	Mass $=1.25 \times 10^{-3} \times 880=(1.1 \mathrm{~g})$	M4
	M5 Total mass oil needed $=$ M $4 \times 100 / 85=1.55 \mathrm{~g}$	Total mass oil needed $=1.1 \times{ }^{100} / 85=1.29 \mathrm{~g}$ If wrong ratio used treat as AE and mark ECF	$\begin{gathered} \mathrm{M} 5 \\ (3 \times \mathrm{AO} 2, \\ 2 \times \mathrm{AO} 3) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
09.3	Extra step: Weigh the bottle after oil transfer (and record the mass) Justification: Not all of the oil is transferred Or so that the mass of oil left in the bottle is accounted for Or find the exact mass of oil used	OR Rinse the bottle with solvent after transfer and add the washings (to the volumetric flask) To ensure all the oil is transferred M2 is dependent on M1	M1 $\begin{gathered} \text { M2 } \\ (2 \times \text { AO3 }) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
09.4 To ensure the solution is homogeneous Allow evenly mixed/ distributed OWTTE Uniform solution 1			

Question	Answers	Additional Comments/Guidelines	Mark

09.5	$M_{r}=345-1$ $M_{r}\left(C_{5} \mathrm{H}_{10} \mathrm{O}\right)=86$ $\mathrm{M}_{1}=4 \mathrm{Hence} \mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{4}$	Must show workings in both M1 and M2	M1
M2			
$(2 \times$ AO2 $)$			

$\mathbf{0}$	$\mathbf{3} \quad$ This question is about ketones.

0	3	1

This reaction can be used to identify a ketone if the crystalline solid is separated, purified by recrystallisation, and the melting point determined.

Describe how the crystalline solid is separated and purified.
\qquad

This hydroxynitrile is usually made by reaction of propanone with KCN followed by dilute acid, instead of with HCN

State the hazard associated with the use of KCN
Suggest a reason, other than safety, why KCN is used instead of HCN.

Hazard \qquad
Why KCN is used \qquad

| 0 | 3 | 3 |
| :--- | :--- | :--- | [4 marks]

Question	Answers	Additional comments/Guidelines	Mark		
3.1	filter / decant	allow small volume allow to make saturated solution not warm lgnore hot filtration	1		
	dissolve in minimum vol				
of hot solvent					
cool / leave (to crystallise) AND filter (under reduced pressure)					
Wash with cold solvent/water, and dry (with method)				$\quad 1$	1
:---					

Question	Answers	Additional comments/Guidelines	Mark
3.2	M1 toxic / poisonous	allow can produce toxic fumes/gas / corrosive	1
	M2 HCN weak / [CN-] too low ORA	allow KCN dissociates to provide CN-/nucleophile allow KCN dissociates better/more than HCN	1

Question	Answers	Additional comments/Guidelines	Mark
3.3	M1 cyanide ion with lone pair on C and negative charge and curly arrow from lone pair to C of $\mathrm{C}=\mathrm{O}$ M2 Curly arrow from = to O M3 intermediate anion M4 curly arrow from lone pair on O to H^{+}	not if $\mathrm{K}-\mathrm{CN}$ bond shown breaking not if dipole incorrect new bond must be to C of CN allow curly arrow to H of HCN	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 1 \end{array}$

