A' Level Chemistry
 Year 2

Unit 14: Acids \& Bases

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based
Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

| $\mathbf{0}$ | $\mathbf{2} \quad$ This question is about acidic solutions. |
| :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ The acid dissociation constant, K_{a}, for ethanoic acid is given by the expression ${ }^{2}$, |
| :--- | :--- | :--- | :--- |

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

The value of K_{a} for ethanoic acid is $1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ at $25^{\circ} \mathrm{C}$
A buffer solution with a pH of 3.87 was prepared using ethanoic acid and sodium ethanoate. In the buffer solution, the concentration of ethanoate ions was $0.136 \mathrm{~mol} \mathrm{dm}^{-3}$

Calculate the concentration of the ethanoic acid in the buffer solution.
Give your answer to three significant figures.

Question	Answers	Mark	Additional Comments/Guidance

| $\mathbf{0}$ | $\mathbf{9}$. | $\mathbf{2}$ Sodium hydroxide solution was added gradually from a burette to $25 \mathrm{~cm}^{3}$ of |
| :--- | :--- | :--- | $0.080 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid at $25^{\circ} \mathrm{C}$ The pH was measured and recorded at regular intervals.

The results are shown in Figure 4.
Figure 4

Use Figure 4 to determine the value of K_{a} for propanoic acid at $25^{\circ} \mathrm{C}$ Show your working.
\qquad $\mathrm{mol} \mathrm{dm}^{-3}$

| 0 | 9 | 3 |
| :--- | :--- | :--- | Tick (\checkmark) one box.

Indicator	$\mathbf{p H}$ range	Tick (\checkmark) one box
methyl orange	$3.1-4.4$	
bromothymol blue	$6.0-7.6$	
cresolphthalein	$8.2-9.8$	
indigo carmine	$11.6-13.0$	

Question 9 continues on the next page

Question	Answers	Additional Comments/Guidelines	Mark

09.2	View with Figure X (ie graph) as they may show working there. M1: Determines volume at half equivalence $\left(=\frac{19.5}{2} \mathrm{~cm}^{3}\right)=9.75\left(\mathrm{~cm}^{3}\right)$ M2: $\mathrm{pH}=4.80$ to 4.95 M3: $K_{\mathrm{a}}\left(=10^{-\mathrm{pH}}\right)=10^{-4.9}=1.26 \times 10^{-5}$ Alternative method M1: pH of pure acid $=3$ M2: $K_{a}=\left(10^{-3}\right)^{2} / 0.080$ M3: $=1.25 \times 10^{-5}$	Ignore calculations of mols of salt or acid M1: Allow reading on graph to be from 19.4 to 19.7 giving M1 = 9.7 to 9.85 M 2 : Reads off pH at half equivalence M3: Allow 1.12×10^{-5} to 1.58×10^{-5} M3: Allow 2sf or more Alternative M1 if calculation incorrect: Allow $\mathrm{pH}=\mathrm{p} K_{a}$ or $\left[\mathrm{H}^{+}\right]=K_{a}$ at half equivalence	1 1 1
09.3	cresolphthalein		1

Propanoic acid $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)$ is a weak acid.
The acid dissociation constant $\left(K_{\mathrm{a}}\right)$ for propanoic acid is $1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ at $25^{\circ} \mathrm{C}$

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$ State the meaning of the term weak acid.

\qquad
\qquad

K_{a}

| 0 | $\mathbf{4}$. | $\mathbf{3}$ A student dilutes $25.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid by adding water until the |
| :--- | :--- | :--- | total volume is $100.0 \mathrm{~cm}^{3}$

Calculate the pH of this diluted solution of propanoic acid.
Give your answer to 2 decimal places.
\qquad

Question	Answers	Additional comments/Guidelines	Mark
04.1	(Acid) partially or slightly ionises/dissociates (in water to form H^{+} ions)	Allow - does not fully ionise/dissociate	1
04.2	$\left(\mathrm{K}_{\mathrm{a}}\right)=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]}$	Allow $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$ Do not allow ()	1

A pH meter is calibrated using a calibration graph.
To create the calibration, the pH meter is used to measure the pH of separate solutions, each with a known, accurate pH .

Figure 3 shows the calibration graph.
Figure 3

0	6	4
U		

\qquad

| 0 | 6 | 5 |
| :--- | :--- | :--- | calibration measurements.

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{6}$ The calibrated pH meter is used to monitor the pH during a titration of |
| :--- | :--- | :--- | :--- | hydrochloric acid with sodium hydroxide.

Explain why the volume of sodium hydroxide solution added between each pH measurement is smaller as the end point of the titration is approached.
\qquad
\qquad
Figure 4 shows the pH curve for a titration of hydrochloric acid with sodium hydroxide solution.

Figure 4

Table 6 shows data about some indicators.
Table 6

Indicator	pH range	Colour at low $\mathbf{p H}$	Colour at high $\mathbf{p H}$
Bromocresol green	$3.8-5.4$	yellow	blue
Phenol red	$6.8-8.4$	yellow	red
Thymolphthalein	$9.3-10.5$	colourless	blue

The student plans to do the titration again using one of the indicators in Table 6 to determine the end point.

0	6	$\mathbf{7}$	State why all three of the indicators in Table 6 are suitable for this titration.

\qquad
\qquad
 $25.00 \mathrm{~cm}^{3}$ of $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.

Calculate the pH of the final solution at $25^{\circ} \mathrm{C}$
$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at $25^{\circ} \mathrm{C}$
pH

Question	Answers	Additional comments/Guidelines	Mark
06.4	5.55	Allow 5.5 to 5.6	1

Question	Answers	Additional comments/Guidelines	Mark		
06.5	Different solutions must not contaminate each other or To wash off any residual solution/substance (which could interfere with the reading)	pH of previous solution doesn't contaminate new solution	1		
Ignore to make neutral/neutralise					
Ignore so as not to affect concentrations				\quad	
:---					

Question	Answers	Additional comments/Guidelines	Mark
06.6	To avoid missing the end point Or (Very little pH change per cm^{3} added at start) large change in pH (near end point)		1

Question	Answers	Additional comments/Guidelines	Mark
06.7	All have a colour change/pH range within the steep/vertical part of the titration curve	Colour change/pH range between pH 3 and 11	1

Question	Answers	Additional comments/Guidelines	Mark
06.8	M1 Amount of $\mathrm{OH}^{-}=36.25 \times 0.200 \div 1000=7.25 \times 10^{-3} \mathrm{~mol}$ and Amount of $\mathrm{H}^{+}=25.0 \times 0.150 \div 1000=3.75 \times 10^{-3} \mathrm{~mol}$ M2 Amount of excess $\mathrm{OH}^{-}=7.25 \times 10^{-3}-3.75 \times 10^{-3}$ $=3.50 \times 10^{-3} \mathrm{~mol}$ M3 $\left[\mathrm{OH}^{-}\right]=\left(3.50 \times 10^{-3}\right) \div\left(61.25 \times 10^{-3}\right)\left(=5.71 \times 10^{-2} \mathrm{~mol}\right)$ M4 $\left[\mathrm{H}^{+}\right]=\underline{1.00 \times 10^{-14}} \div 5.71 \times 10^{-2}=1.75 \times 10^{-13}$ M5 $\mathrm{pH}=12.76$	$\begin{aligned} & \text { M3 }\left[\mathrm{OH}^{-}\right]=(\mathrm{M} 2) \div\left(61.25 \times 10^{-3}\right) \\ & \mathrm{M} 4\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-14} \div \mathrm{M} 3 \\ & \mathrm{M} 5 \text { Allow } \mathrm{pH}=12.8 \\ & \mathrm{M} 5 \mathrm{pH}=-\log _{10}(\mathrm{M} 4) \\ & \text { Alternative Method } \\ & \text { M4 p OH }=1.24 \\ & \text { M5 pH }=14-1.24=12.76 \end{aligned}$	1 1 1 1 1

