A' Level Chemistry
 Year 2

Unit 15: Aromatic Chemistry

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

$\mathbf{0}$	$\mathbf{8} \quad$ This question is about nitrobenzenes.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ Nitrobenzene reacts when heated with a mixture of concentrated nitric acid and |
| :--- | :--- | :--- | :--- | concentrated sulfuric acid to form a mixture of three isomeric dinitrobenzenes.

Write an equation for the reaction of concentrated nitric acid with concentrated sulfuric acid to form the species that reacts with nitrobenzene.
$\begin{array}{lll}\mathbf{0} & \mathbf{8} . & \mathbf{2} \text { Name and outline a mechanism for the reaction of this species with }\end{array}$ nitrobenzene to form 1,3-dinitrobenzene.

Name of mechanism
Mechanism

Question	Answers	Mark	Additional Comments/Guidance
$\mathbf{0 8 . 1}$	$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$	1	Allow $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ Allow a combination of equations which produce $\mathrm{NO}_{2}{ }^{+}$ Penalise equations which produce $\mathrm{SO}_{4}{ }^{2-}$

(Anstitution.

0	6
Data about the hydrogenation of cyclohexene and of benzene are given.	

$\mathbf{0}$	$\mathbf{6} \cdot \mathbf{1}$	Explain the bonding in and the shape of a benzene molecule.

Compare the stability of benzene with that of the hypothetical cyclohexa-1,3,5-triene molecule.
Use the data in your answer.
\qquad

| $\mathbf{0}$ | $\mathbf{6} .2$ The enthalpy of hydrogenation of cyclohexa-1,3-diene is not exactly double that of |
| :--- | :--- | :--- | cyclohexene.

Suggest a value for the enthalpy of hydrogenation of cyclohexa-1,3-diene and justify your value.
\qquad

| 0 | 7 |
| :--- | :--- | Acyl chlorides are useful reagents in synthesis. They react with aromatic compounds and also with alcohols.

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{1}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ reacts with benzene in the presence of AlCl_{3} in an electrophilic |
| :--- | :--- | :--- | :--- | :--- | substitution reaction.

Give an equation for the reaction of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ with AlCl_{3} to form the electrophile. Outline a mechanism for the reaction of this electrophile with benzene.

Equation
Mechanism

Give the IUPAC name of the alcohol.
Give the reagent needed for this reaction and name the mechanism.

IUPAC name
Reagent \qquad
Name of mechanism \qquad

| 0 | $\mathbf{7}$. | 3 |
| :--- | :--- | :--- | The alcohol shown in Question 07.2 reacts with ethanoyl chloride to form an ester.

Describe what would be observed when the alcohol reacts with ethanoyl chloride. Name the mechanism for the reaction to form the ester. Draw the structure of the ester.

Observation
\qquad

Name of mechanism \qquad

Structure of ester

Question		Answers	Additional Comments/Guidance	Mar \mathbf{k}
06.1	This question is marked using Levels of Response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.		Indicative chemistry content Stage 1 Bonding 1a) Each C has three (covalent) bonds 1b) Spare electrons (in a p orbital) overlap (to form a π cloud) 1c) delocalisation Stage 2 Shape 2a) Planar 2b) Hexagon $/ 6$ carbon ring $/ 120^{\circ}$ bond angle 2c) C-C bonds equal in length / C-C bond lengths between single and double bond Stage 3 Stability 3a) Expected ΔH^{ρ} hydrog n of cyclohexatriene $=-360 \mathrm{~kJ} \mathrm{~mol}^{-1}$ 3b) ΔH^{ρ} hydrog ${ }^{n}$ benzene (is less exothermic) by $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ 3c) Benzene lower in energy than cyclohexatriene / Benzene is more stable	6
	Level 3 5-6 marks	All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer communicates the whole process coherently and shows a logical progression from stage 1 and stage 2 to stage 3. Completely correct use of sign and language in Stage 3.		
	Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows a progression through the stages. Some steps in each stage may be incomplete. Some errors in use of sign and language in Stage 3.		
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes some isolated statements but these are not presented in a logical order or show confused reasoning.		
	Level 0 0 marks	Insufficient correct chemistry to gain a mark.		

	Value within range -239 to -121	1	If outside range including positive values CE=0
06.2	Double bonds separated by one single bond / alternating (or shown in structure) Allows some delocalisation/overlap of p orbitals The wording ' close enough to allow delocalisation' would score M2 and		
M3			
Total		9	

07.1	$\mathrm{AlCl}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$	$\longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}}=\mathrm{O}+\mathrm{AlCl}_{4}^{-}$	M1	Allow + on C or O in equation But must be on C in mechanism
	 OR Kekule	M_{4} M_{3} M4 M3	M2 Arrow from inside hexagon to C or + on C M3 Structure of intermediate - horseshoe centred on C1 and must not extend beyond C2 and C6, but can be smaller - + in intermediate not too close to C1 (allow on or "below" a line from C2 to C6) M4 Arrow from bond into hexagon (Unless Kekule) - Can allow M4 arrow independent of wrong M3 structure - + on H in intermediate loses M3 not M4 - Ignore Cl^{-}and AlCl_{4}^{-}used in M4	
07.2	1-phenylpropan-1-ol $\mathrm{NaBH}_{4} / \mathrm{LiAlH}_{4}$ Nucleophilic addition	1-phenylpropan-1-ol H_{2} with $\mathrm{Ni} / \mathrm{Pd} / \mathrm{Pt}$ Addition/hydrogenation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Both numbers needed for name Ignore solvents

07.3	Misty fumes / steamy fumes (Nucleophilic) addition-elimination	1 1	Allow sweet/fruity smell / white fumes Not smoke
Total		10	

| 0 | $\mathbf{8}$ |
| :--- | :--- | $\mathbf{1}$ Name the mechanism of the reaction in Step 1.

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{2}$ Complete the equation for the reaction in Step $\mathbf{2}$.

Traditionally, paracetamol has been made industrially in a three-step synthesis from phenol.

\qquad

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{3}$
In theory, either ethanoyl chloride or ethanoic anhydride could be used in Step $\mathbf{3}$.			

Complete the mechanism for the reaction of 4-aminophenol with ethanoyl chloride. RNH_{2} is used to represent 4-aminophenol in this mechanism.

| 0 | 8 | 4 | In practice, ethanoic anhydride is used in the industrial synthesis rather than |
| :--- | :--- | :--- | :--- | ethanoyl chloride.

Give one reason why ethanoyl chloride is not used in the industrial synthesis.
\qquad
\qquad

Question 8 continues on the next page

Draw the structure of one of these other aromatic products.

$\mathbf{0}$	$\mathbf{8} .6$	6
6		

In the first step, phenol is oxidised to hydroquinone.

In the second step, hydroquinone reacts with ammonium ethanoate to form paracetamol.

Complete the equation for this second step.

| 0 | 8. | 7 |
| :--- | :--- | :--- | Calculate the mass, in kg , of hydroquinone $\left(M_{\mathrm{r}}=110.0\right)$ needed to produce 250 kg of paracetamol.

Turn over for the next question

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/2 - JUNE 2019

Question	Answers	Additional Comments/Guidelines	Mark
G 08.1	Electrophilic substitution both words needed	Allow minor spelling errors e.g. electrophillic or subsitution Ignore nitration	1
08.2	+ $3 \mathrm{H}_{2} \ldots \ldots \ldots \ldots \ldots \ldots . .+2 \mathrm{H}_{2} \mathrm{O}$	Allow 6[H]	1
08.3	M1 for structure	M1 for structure of ion including 2 charges (+ on N must be correct in both cases if drawn twice) M2 for 3 arrows and Ip on O - may be scored in two steps Ignore use of RNH_{2} to remove H^{+}in M 2 , but penalise use of Cl^{-}	2
08.4	Corrosive OR forms strong acid/ HCl (fumes) $\mathbf{O R}$ vulnerable to hydrolysis OR dangerous (to use)	Allow anhydride is less corrosive OR does not form strong acid fumes OR less vulnerable to hydrolysis OR ethanoyl chloride is more expensive Allow reacts violently / extremely exothermic / extremely vigorous Ignore toxic / harmful / hazardous	1

08.5			1
08.6	$+\mathrm{CH}_{3} \mathrm{COONH}_{4}$....................... $+2 \mathrm{H}_{2} \mathrm{O}$	Allow $\mathrm{CH}_{3} \mathrm{COO}^{-} / \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$and $\mathrm{NH}_{4}{ }^{+}$ Allow $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}$	1
08.7	Via moles M1 M_{r} paracetamol $=151(.0)$ M2 Amount paracetamol $=250 \times 10^{3} / 151.0=1655.6 \mathrm{~mol}$ OR $\left(250 \times 10^{3}\right) / \mathrm{M} 1$ (= amount hydroquinone used) M3 Mass hydroquinone $=1655.6 \times 110.0=182119 \mathrm{~g}=182 \mathrm{~kg}$ OR correct answer to M2 $\times 110.0$ / 1000	OR via mass M1 M_{r} paracetamol $=151(.0)$ So 110 g hydroquinone forms 151 g paracetamol M2 Mass hydroquinone needed $250 \times 110 / 151.0$ OR $250 \times 110 / \mathrm{M} 1$ $=182 \mathrm{~kg}$ Min 2sf If Mr values used wrong way round can score M2	M1 M2 M3

| 0 | 4 | Aspirin can be produced by reacting salicylic acid with ethanoic anhydride. |
| :--- | :--- | :--- | An incomplete method to determine the yield of aspirin is shown.

1. Add about 6 g of salicylic acid to a weighing boat.
2. Place the weighing boat on a 2 decimal place balance and record the mass.
3. Tip the salicylic acid into a $100 \mathrm{~cm}^{3}$ conical flask.
4. \qquad
5. Add $10 \mathrm{~cm}^{3}$ of ethanoic anhydride to the conical flask and swirl.
6. Add 5 drops of concentrated phosphoric acid.
7. Warm the flask for 20 minutes.
8. Add ice-cold water to the reaction mixture and place the flask in an ice bath.
9. Filter off the crude aspirin from the mixture and leave it to dry.
10. Weigh the crude aspirin and calculate the yield.

Justify why this step is necessary.

Instruction \qquad
Justification \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4} .2$ | Suggest a suitable piece of apparatus to measure out the ethanoic anhydride in |
| :--- | :--- | :--- | step 5.

\qquad

0	4	3

\qquad

| 0 | $\mathbf{4}$ | .4 Complete the equation for the reaction of salicylic acid with ethanoic anhydride to |
| :--- | :--- | :--- | produce aspirin.

Salicylic acid

Aspirin

0	4	5

$10.5 \mathrm{~cm}^{3}$ of ethanoic anhydride ($M_{\mathrm{r}}=102.0$).
In the reaction the yield of aspirin is 84.1%
The density of ethanoic anhydride is $1.08 \mathrm{~g} \mathrm{~cm}^{-3}$
Show by calculation which reagent is in excess.
Calculate the mass, in g , of aspirin ($M_{\mathrm{r}}=180.0$) produced.
\qquad

| 0 | $\mathbf{4}$ | 6 | Suggest two ways in which the melting point of the crude aspirin collected in step 9 |
| :--- | :--- | :--- | :--- | would differ from the melting point of pure aspirin.

Difference 1
\qquad
Difference 2
-
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{7}$ | The crude aspirin can be purified by recrystallisation using |
| :--- | :--- | :--- | :--- | hot ethanol (boiling point $=78^{\circ} \mathrm{C}$) as the solvent.

Describe two important precautions when heating the mixture of ethanol and crude aspirin.

Precaution 1 \qquad
\qquad
Precaution 2 \qquad
\qquad

0	$\mathbf{4}$.8

A small amount of cold ethanol is then poured through the Buchner funnel.
Explain the purpose of adding a small amount of cold ethanol.
\qquad
\qquad
\qquad

0	4	9

Describe one difference in appearance you would expect to see between these two solid samples.
\qquad
\qquad
\qquad

Question	Answers	Additional comments/Guidelines	Mark
04.1	M1 (Re)weigh the empty boat M2 In order to calculate the (exact) mass of salicylic acid added to the reaction mixture		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
04.2	$10 \mathrm{~cm}^{3}$ measuring cylinder (if volume given - allow between 10 to $50 \mathrm{~cm}^{3}$) Or a $10 \mathrm{~cm}^{3}$ pipette Or burette / graduated pipette Or $10 \mathrm{~cm}^{3}$ syringe		1
04.3	Corrosive	Allow skin burn / permanent eye damage Ignore irritant / toxic	1
04.4	$\mathrm{LHS}+\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \quad \mathrm{RHS}+\mathrm{CH}_{3} \mathrm{COOH}$		1
04.5	M1 Amount salicylic acid $={ }^{6.01} / 138=4.36 \times 10^{-2} \mathrm{~mol}$ M2 Mass $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}=10.5 \times 1.08=11.34 \mathrm{~g}$ M3 Amount $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}={ }^{11.34} / 102=1.11 \times 10^{-1} \mathrm{~mol}$ M4 $\quad\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ is in excess M5 Mass aspirin $=\mathrm{M} 1 \times 0.841 \times 180=6.59 \mathrm{~g}$	Allow conseq from wrong mole ratio in 04.4 Must show and state that ethanoic anhydride is in excess For M4/M5 ecf from M1/M3 Allow 2 sf or more.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

04.6	M1	Value lower		1
	M2	Range of values	For M2 allow mpt not sharp or a larger range of melting points	1

| 04.7 | M1
 (Ethanol is flammable so) use a water bath to heat / do not
 use a Bunsen burner
 Heat to temp below bp (so ethanol does not boil away) | Must give practical step, not just state hazard | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 04.8 | To remove any soluble impurities | Allow To avoid aspirin dissolving (small amount
 cold solvent used)
 Allow To remove/(wash away) any ethanolic
 solution on the product. | 1 |
| 04.9 | Pure product will have (larger) crystals / needle-like crystals / lighter
 in colour | Allow whiter, less grey, more crystalline, less
 powdery, shinier, single colour
 Must be tied to pure product
 Allow opposite points tied to the crude product | 1 |

Kekulé suggested this structure for benzene.

Benzene is now represented by this structure.

Figure 3 shows the relative stability of
 compared to

Figure 3

	Use Figure 3 and the data shown in Table 1 to calculate ΔH_{2}	
Table 1		
		$\Delta H / \mathrm{kJ} \mathrm{mol}^{-1}$
	Enthalpy of atomisation for carbon	+715
	Enthalpy of atomisation for hydrogen	+218
	Bond enthalpy ($\mathrm{C}-\mathrm{C}$)	+348
	Bond enthalpy ($\mathrm{C}=\mathrm{C}$)	+612
	Bond enthalpy (C-H)	+412

$$
\Delta H_{2}
$$

\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ Explain, in terms of structure and bonding, why

 is more thermodynamically stable than

\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ | A mixture of concentrated nitric acid and concentrated sulfuric acid reacts with |
| :--- | :--- | :--- | :--- | benzene.

Figure 4 shows the incomplete mechanism for this reaction.
Name the mechanism.
Complete the mechanism in Figure 4 by adding

- any lone pairs of electrons involved in each step
- two curly arrows in step 1
- a curly arrow in step 2
- a curly arrow in step 3
- a curly arrow in step 4.

Name of mechanism
Figure 4

\qquad

Question	Answers	Additional Comments/Guidelines	Mark
04.1	$\begin{aligned} & (3 \times 612)+(3 \times 348)+(6 \times 412)=5352 \\ & (6 \times 715)+(6 \times 218)=5598 \\ & \Delta H_{2}=\mathrm{M} 2-\mathrm{M} 1-83=+163 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	For LHS For RHS	M1 M2 M3
Question	Answers	Additional Comments/Guidelines	Mark
04.2	(π) electrons delocalised		1

Question

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ Give an equation for the overall reaction when benzene reacts with |
| :--- | :--- | :--- | methanoyl chloride.

Name the organic product.

Equation
Name \qquad

0	$\mathbf{8}$.	$\mathbf{2}$ Identify the catalyst needed in this reaction.

Give an equation to show how the catalyst is used to form the electrophile, $[\mathrm{HCO}]^{+}$
[2 marks]
Catalyst \qquad

Equation \qquad

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{3}$ Outline the mechanism for the reaction of benzene with the electrophile, [HCO] ${ }^{+}+{ }^{+}$. |
| :--- | :--- | :--- | :--- |

Question	Answers	Additional Comments/Guidelines	Mark
08.1	$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HCOCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCl}$ Or shown as structural formulae Benzaldehyde	Allow phenyl methanal Allow Benzenealdehyde or Benzene carbaldehyde If ethanoyl chloride used allow ecf for name: phenyl ethanone	$\begin{gathered} 1 \\ 1 \\ (2 \times \mathrm{AO} 2) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
08.2	$\begin{aligned} & \mathrm{AlCl}_{3} \\ & \mathrm{HCOCl}+\mathrm{AlCl}_{3} \rightarrow[\mathrm{HCO}]^{+}+\left[\mathrm{AlCl}_{4}\right]^{-} \end{aligned}$	Allow Aluminium chloride Allow Iron (III) chloride / bromide or formulae Allow + on C or O in equation Can score M1 in equation	$\begin{gathered} 1 \\ 1 \\ (1 \times \mathrm{AO} 1, \\ 1 \times \mathrm{AOO}) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
08.3		M1 Arrow from inside hexagon to C or + on C M2 Structure of intermediate - horseshoe centred on C1 and must not extend beyond C2 and C6, but can be smaller $\bullet+$ in intermediate not too close to C 1 (allow on or "below" a line from C2 to C6) M3 Arrow from bond into hexagon (Unless Kekule) - Can allow M3 arrow independent of wrong M2 structure - + on H in intermediate loses M2 not M3 - Ignore Cl^{-}and AlCl_{4}^{-}used in M3	M1 M2 $\begin{gathered} \mathrm{M} 3 \\ (3 \times \mathrm{AO} 2) \end{gathered}$

