A' Level Chemistry Year 2

Unit 15: Aromatic Chemistry

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms

Take Time to Answer Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

0 8	This question is about nitrobenzenes.	
0 8 . 1	Nitrobenzene reacts when heated with a mixture of concentrated nitric acid and concentrated sulfuric acid to form a mixture of three isomeric dinitrobenzenes.	ł
	Write an equation for the reaction of concentrated nitric acid with concentrated sulfuric acid to form the species that reacts with nitrobenzene	
	[1 mark]
		-
08.2	Name and outline a mechanism for the reaction of this species with nitrobenzene to form 1,3-dinitrobenzene.	
	[4 marks]
	Name of mechanism	_
	Mechanism	
	Turn over for the next question	

Question	Answers	Mark	Additional Comments/Guidance
08.1	$HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$	1	Allow $H_2SO_4 + HNO_3 \rightarrow NO_2^+ + HSO_4^- + H_2O$ Allow a combination of equations which produce NO_2^+ Penalise equations which produce SO_4^{2-}
	Electrophilic substitution.	1	Ignore nitration
	M ₁ M ₃		M1 Arrow from inside hexagon to N or + on N (Allow NO_2^+)
	O_2N O_2N O_2N H O_2N H O_2 M_2		 M2 Structure of intermediate horseshoe centred on C1 and must not extend beyond C2 and C6, but can be smaller + in intermediate not too close to C1 (allow on or "below" a line from C2 to C6)
08.2	OR Kekule M1 M3	3	 M3 Arrow from bond into hexagon (Unless Kekule) Allow M3 arrow independent of M2 structure + on H in intermediate loses M2 not M3
	O_2N $+$ O_2N $+$ H NO_2 $ NO_2$		

The enthaling of hydrogenation of cycloheva 1.3 diago is not exactly double that of
[3 marks]

Turn over ►

9

0 7	Acyl chlorides are useful reagents in synthesis. They react with aromatic compounds and also with alcohols.
0 7.1	CH_3CH_2COCl reacts with benzene in the presence of $AlCl_3$ in an electrophilic substitution reaction.
	Give an equation for the reaction of CH_3CH_2COCl with $AlCl_3$ to form the electrophile. Outline a mechanism for the reaction of this electrophile with benzene. [4 marks]
	Equation
	Mechanism

0 7.2	The organic product in Question 07.1 can be converted into the alcohol shown.
	C CH ₂ CH ₃
	ОН
	Give the IUPAC name of the alcohol. Give the reagent needed for this reaction and name the mechanism. [3 marks]
	IUPAC name
	Reagent
	Name of mechanism
07.3	The alcohol shown in Question 07.2 reacts with ethanoyl chloride to form an ester.
	Describe what would be observed when the alcohol reacts with ethanoyl chloride. Name the mechanism for the reaction to form the ester.
	Draw the structure of the ester. [3 marks]
	Observation
	Name of mechanism
	Structure of ester
	Turn over for the next question

10

Question		Answers	Additional Comments/Guidance	Mar k
	This ques Instructior	tion is marked using Levels of Response. Refer to the Mark Scheme ns for Examiners for guidance on how to mark this question.	Indicative chemistry content	6
	Level 3 5-6 marks	All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer communicates the whole process coherently and shows a logical progression from stage 1 and stage 2 to stage 3. Completely correct use of sign and language in Stage 3.	Stage 1 Bonding 1a) Each C has three (covalent) bonds 1b) Spare electrons (in a p orbital) overlap (to form a π cloud) 1c) delocalisation	
06.1	Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows a progression through the stages. Some steps in each stage may be incomplete. Some errors in use of sign and language in Stage 3.	Stage 2 Shape2a) Planar2b) Hexagon/6 carbon ring/120° bond angle2c) C-C bonds equal in length / C-C bondlengths between single and double bond	
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes some isolated statements but these are not presented in a logical order or show confused reasoning.	Stage 3 Stability 3a) Expected ΔH^{θ} hydrog ⁿ of cyclohexatriene = -360 kJ mol ⁻¹ 3b) ΔH^{θ} hydrog ⁿ benzene (is less exothermic) by 152 kJ mol ⁻¹ 3c) Benzene lower in energy than	
	Level 0 0 marks	Insufficient correct chemistry to gain a mark.	cyclohexatriene / Benzene is more stable	

06.2	Value within range –239 to –121 Double bonds separated by one single bond / alternating (or shown in structure) Allows some delocalisation/overlap of p orbitals	1 1 1	If outside range including positive values CE=0 The wording ' close enough to allow delocalisation' would score M2 and M3 Ignore reference to hydration here
Total		9	

	AICl ₃ + CH ₃ CH ₂ COCl –	\rightarrow CH ₃ CH ₂ -C=O + AICl ₄ -	M 1	Allow + on C or O in equation – But must be on C in mechanism
07.1	M ₂ COCH ₂ CH ₃	M_4 H H $COCH_2CH_3$ M_3	M2 Arrow fr M3 Structur horses C6, bu + in int from C	om inside hexagon to C or + on C e of intermediate hoe centred on C1 and must not extend beyond C2 and t can be smaller ermediate not too close to C1 (allow on or "below" a line 2 to C6)
	M2 COCH ₂ CH ₃	M4 \downarrow^+ \downarrow^H $\downarrow^COCH_2CH_3$ M3	M4 Arrow fr • Can • + on • Igno	om bond into hexagon (Unless Kekule) allow M4 arrow independent of wrong M3 structure H in intermediate loses M3 not M4 re Cl ⁻ and AlCl ₄ used in M4
07.2	1-phenylpropan-1-ol NaBH ₄ / LiAlH ₄ Nucleophilic addition	1-phenylpropan-1-ol H ₂ with Ni/Pd/Pt Addition/hydrogenation	1 1 1	Both numbers needed for name Ignore solvents

07.3	Misty fumes / steamy fumes (Nucleophilic) addition-elimination CH_3 CH_2 CH_3 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_2 CH_3 $CH_$	1 1 1	Allow sweet/fruity smell / white fumes Not smoke
Total		10	

IB/G/Jun19/7405/2

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/2 – JUNE 2019

Question	Answers	Additional Comments/Guidelines	Mark
G 08.1	Electrophilic substitution both words needed	Allow minor spelling errors e.g. electrophillic or subsitution Ignore nitration	1
08.2	+ 3H ₂ + 2H ₂ O	Allow 6[H]	1
08.3	$\begin{array}{c} \overbrace{CH_{3}-C}^{O} \xrightarrow{O} \\ + \\ R \xrightarrow{-N}-H \\ + \\ H \xrightarrow{O} \\ R \xrightarrow{N}H_{2} \end{array} \qquad $	M1 for structure of ion including 2 charges (+ on N must be correct in both cases if drawn twice) M2 for 3 arrows and Ip on O - may be scored in two steps Ignore use of RNH₂ to remove H ⁺ in M2, but penalise use of CI ⁻	2
08.4	Corrosive OR forms strong acid/HCl (fumes) OR vulnerable to hydrolysis OR dangerous (to use)	Allow anhydride is less corrosive OR does not form strong acid fumes OR less vulnerable to hydrolysis OR ethanoyl chloride is more expensive Allow reacts violently / extremely exothermic / extremely vigorous Ignore toxic / harmful / hazardous	1

08.5	$ \begin{array}{c} O \\ H_2 \end{array} $ $ \begin{array}{c} O \\ O \\ O \\ O \\ O \\ H_N \\ O \\ O \\ O \\ H_N \\ O \\ $		1
08.6	+ CH ₃ COONH ₄ + 2H ₂ O	Allow $CH_3COO^- / CH_3CO_2^-$ and NH_4^+ Allow NH_4CH_3COO	1
08.7	Via moles M1 M_r paracetamol = 151(.0) M2 Amount paracetamol = 250 × 10 ³ / 151.0 = 1655.6 mol OR (250 × 10 ³) / M1 (= amount hydroquinone used) M3 M3 Mass hydroquinone = 1655.6 × 110.0 = 182119 g = 182 kg OR correct answer to M2 × 110.0 / 1000	OR via massM1 M_r paracetamol = 151(.0) So 110 g hydroquinone forms 151 g paracetamolM2Mass hydroquinone needed 250 × 110 / 151.0 OR 250 × 110 / M1 = 182 kgMin 2sf 	M1 M2 M3

0 4	Aspirin can be produced by reacting salicylic acid with ethanoic anhydride.	d
	An incomplete method to determine the yield of aspirin is shown.	
	1. Add about 6 g of salicylic acid to a weighing boat.	
	2. Place the weighing boat on a 2 decimal place balance and record the mass.	
	3. Tip the salicylic acid into a 100 cm ³ conical flask.	
	 Add 10 cm³ of ethanoic anhydride to the conical flask and swirl. 	
	6. Add 5 drops of concentrated phosphoric acid.	
	7. Warm the flask for 20 minutes.	
	8. Add ice-cold water to the reaction mixture and place the flask in an ice bath.	
	9. Filter off the crude aspirin from the mixture and leave it to dry.	
	10. Weigh the crude aspirin and calculate the yield.	
04.1	Describe the instruction that is missing from step 4 of the method.	
	Justify why this step is necessary	
	[2 marks]]
	Instruction	_
	Justification	
		-
	·	-
		_
0 4 . 2	Suggest a suitable piece of apparatus to measure out the ethanoic anhydride in step 5 .	
		1
	[1 mark]	l
	[1 mark]	-
04.3	[1 mark]	J

04.9	A sample of the crude aspirin is kept to compare with the purified aspirin. Describe one difference in appearance you would expect to see between these solid samples.	two mark]
04.8	The pure aspirin is filtered under reduced pressure. A small amount of cold ethanol is then poured through the Buchner funnel. Explain the purpose of adding a small amount of cold ethanol. [1	mark]
	Precaution 2	
	aspirin. [2] Precaution 1	marks]
04.7	The crude aspirin can be purified by recrystallisation using hot ethanol (boiling point = 78 °C) as the solvent. Describe two important precautions when heating the mixture of ethanol and cr	ude
	Difference 2	
	Difference 1	
04.6	Suggest two ways in which the melting point of the crude aspirin collected in sta would differ from the melting point of pure aspirin.	ep 9

Do not write outside the box

Question	Answers	Additional comments/Guidelines	Mark
04.1	 M1 (Re)weigh the empty boat M2 In order to calculate the (exact) mass of salicylic acid added to the reaction mixture 		1 1
04.2	10 cm ³ measuring cylinder (if volume given – allow between 10 to 50 cm ³) Or a 10 cm ³ pipette Or burette / graduated pipette Or 10 cm ³ syringe		1
04.3	Corrosive	Allow skin burn / permanent eye damage Ignore irritant / toxic	1
04.4	LHS + (CH ₃ CO) ₂ O RHS + CH ₃ COOH		1
04.5	M1Amount salicylic acid = ${}^{6.01}/{}_{138}$ = 4.36×10^{-2} molM2Mass (CH_3CO)_2O = 10.5×1.08 = 11.34 gM3Amount (CH_3CO)_2O = ${}^{11.34}/{}_{102}$ = 1.11×10^{-1} molM4(CH_3CO)_2O is in excessM5Mass aspirin = M1 × 0.841 × 180 = 6.59 g	Allow conseq from wrong mole ratio in 04.4 Must show and state that ethanoic anhydride is in excess For M4/M5 ecf from M1/M3 Allow 2 sf or more.	1 1 1 1

04.6	M1 Value lower		1
	M2 Range of values	For M2 allow mpt not sharp or a larger range of melting points	1
04.7	M1 (Ethanol is flammable so) use a water bath to heat / do not use a Bunsen burner	Must give practical step, not just state hazard	1
	M2 Heat to temp below bp (so ethanol does not boil away)	Allow use min vol solvent	1
04.8	To remove any soluble impurities	Allow To avoid aspirin dissolving (small amount cold solvent used)	1
		Allow To remove/(wash away) any ethanolic solution on the product.	
04.9	Pure product will have (larger) crystals / needle-like crystals / lighter	Allow whiter, less grey, more crystalline, less powdery, shinier, single colour	
	in colour	Must be tied to pure product	1
		Allow opposite points tied to the crude product	

Turn over ►

Question	Answers	Additional Comments/Guidelines	Mark
	(3 x 612) + (3 x 348) + (6 x 412) = 5352	For LHS	M1
04.1	(6 x 715) + (6 x 218) = 5598	For RHS	M2
	$\Delta H_2 = M2 - M1 - 83 = +163 \text{ kJ mol}^{-1}$		M3

Question	Answers	Additional Comments/Guidelines	Mark
04.2	(π) electrons delocalised		1

Question	Answers	Additional Comments/Guidelines	Mark
	M1 Electrophilic substitution		1
	M2 for a lone pair and two curly arrows		1
	$O_2 N - \ddot{O}_{H} + O_{O} O_{O} \xrightarrow{\text{Step 1}} O_2 N - O_{H}^{+} + O_{O} O_{O} \xrightarrow{\text{Step 1}} O_2 N - O_{H}^{+} + O_{O} O_{O} \xrightarrow{\text{Step 1}} O_2 N - O_{H}^{+} + O_{O} O_{O} \xrightarrow{\text{Step 1}} O_2 N - O_{H}^{+} + O_{O} O_{O} \xrightarrow{\text{Step 1}} O_2 N - O_{O}^{+} + O_{O} O_{O} \xrightarrow{\text{Step 1}} O_2 N - O_{O}^{+} + O_{O} O_{O} \xrightarrow{\text{Step 1}} O$		
	M3 for a curly arrow from the bond to the O		1
	H H H		I
04.3	$O_2 N \rightarrow O_2 N^+ \longrightarrow O_2 N^+ O_1$		
04.0			
	M4 for a curly arrow from inside the hexagon to the N or + on the N		1
	$O_2N_{\bullet}^{\bullet}$ $\xrightarrow{\text{Step 3}}$ $\xrightarrow{O_2N}$ $+$ $+$		
	M5 curly arrow from the bond back into the hexagon		
	O_2N H^+ H^+ H^+		1

0 8	Benzene reacts with methanoyl chloride (HCOCl) in the presence of a catalyst.	Do not write outside the box
0 8.1	Give an equation for the overall reaction when benzene reacts with methanoyl chloride.	
	Name the organic product. [2 marks]	
	Equation	
	Name	
0 8.2	Identify the catalyst needed in this reaction.	
	Give an equation to show how the catalyst is used to form the electrophile, [HCO] ⁺ [2 marks]	
	Catalyst	
	Equation	
08.3	Outline the mechanism for the reaction of benzene with the electrophile, [HCO]⁺ [3 marks]	
		7

Question	Answers	Additional Comments/Guidelines	Mark
08.1	C_6H_6 + HCOCl \rightarrow C_6H_5CHO + HCl Or shown as structural formulae Benzaldehyde	Allow phenyl methanal Allow Benzenealdehyde or Benzene carbaldehyde If ethanoyl chloride used allow ecf for name : phenyl ethanone	1 1 (2 x AO2)
Question	Answers	Additional Comments/Guidelines	Mark
08.2	AlCl ₃ HCOCl + AlCl ₃ \rightarrow [HCO] ⁺ + [AlCl ₄] ⁻	Allow Aluminium chloride Allow Iron (III) chloride / bromide or formulae Allow + on C or O in equation Can score M1 in equation	1 1 (1 x AO1, 1 x AO2)

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/2 – JUNE 2022

Question	Answers	Additional Comments/Guidelines	Mark
08.3	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	M1 Arrow from inside hexagon to C or + on C M2 Structure of intermediate • horseshoe centred on C1 and must not extend beyond C2 and C6, but can be smaller • + in intermediate not too close to C1 (allow on or "below" a line from C2 to C6) M3 Arrow from bond into hexagon (Unless Kekule) • Can allow M3 arrow independent of wrong M2 structure • + on H in intermediate loses M2 not M3 • Ignore CI ⁻ and AICI ₄ ⁻ used in M3	M1 M2 M3 (3 x AO2)