A' Level Chemistry
 Year 1

Unit 2: Amount Of Substance

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Year 1A' Level Chemi
Group II/ Group VII

Quizlet Classes

Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

| $\mathbf{0}$ | $\mathbf{6}$ A student does an experiment to determine the percentage of copper in an alloy. $. ~ . ~$ |
| :--- | :--- | :--- |

The student

- reacts 985 mg of the alloy with concentrated nitric acid to form a solution (all of the copper in the alloy reacts to form aqueous copper(II) ions)
- pours the solution into a volumetric flask and makes the volume up to $250 \mathrm{~cm}^{3}$ with distilled water
- shakes the flask thoroughly
- transfers $25.0 \mathrm{~cm}^{3}$ of the solution into a conical flask and adds an excess of potassium iodide
- uses exactly $9.00 \mathrm{~cm}^{3}$ of $0.0800 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ solution to react with all the iodine produced.
The equations for the reactions are

$$
\begin{gathered}
2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2} \\
2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}
\end{gathered}
$$

0	6	1

Give your answer to the appropriate number of significant figures.

| $\mathbf{0}$ | $\mathbf{6} . \mathbf{2}$ | Suggest two ways that the student could reduce the percentage uncertainty in the
 measurement of the volume of sodium thiosulfate solution, using the same
 apparatus as this experiment. |
| :--- | :--- | :--- | :--- |
| [2 marks] | | | measurement of the volume of sodium thiosulfate solution, using the same apparatus as this experiment.

0	6	3

\qquad

$\mathbf{0}$	$\mathbf{6} .4$	Give the full electron configuration of a copper(II) ion.

\qquad

$\mathbf{0}$	$\mathbf{6} .5$	$\mathbf{5}$ Copper(I) iodide is a white solid.

Explain why copper (I) iodide is white.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

Question	Answers	Additional Comments/Guidelines	Mark
06.1	M1 Amount of $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}=\frac{9.00 \times 0.0800}{1000}=7.20 \times 10^{-4} \mathrm{~mol}$ (From equations $\mathrm{mol} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\mathrm{mol} \mathrm{Cu}^{2+}$) M2 Amount of Cu^{2+} in $25 \mathrm{~cm}^{3}=7.20 \times 10^{-4} \mathrm{~mol}$ M3 Amount of Cu^{2+} in $250 \mathrm{~cm}^{3}=7.20 \times 10^{-4} \underline{\mathrm{x} 10}=7.20 \times 10^{-3} \mathrm{~mol}$ M4 Mass of copper $=7.20 \times 10^{-3} \mathrm{~mol} \underline{\mathbf{6} 6.5}=0.457 \mathrm{~g}$ M5 mass $=0.985 \mathrm{~g}$ M6 $\% \mathrm{Cu}=0.457 \times \frac{100}{0.985}=46.4 \%$	M2 = answer to M1 (1:1 ratio) $\begin{aligned} & \text { M3 }=\text { M2 } \times 10 \\ & \text { M4 }=\text { M3 } \times 63.5 \end{aligned}$ M5 converting 985mg to g M6 is for the answer to $\mathbf{3} \mathbf{~ s f}$ Allow \% Cu $=457 \times \frac{100}{985}=46.4 \%$ for M5 and M6 Allow (M4 x1000)/985 x 100 for M5 and M6	1 1 1 1 1
06.2	Use more of the alloy Use a lower concentration of the thiosulfate solution/lower mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ to make solution		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
06.3	Oxidizing agent	Allow electron acceptor	1
06.4	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$	Do not allow [Ar]3d ${ }^{9}$	1
06.5	Full (3)d (sub)shell or (3)d ${ }^{10}$ No (d-d) transitions possible/ cannot absorb visible/white light	M2 is dependent on M1 Ignore reflects visible/white light	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

| $\mathbf{0}$ | $\mathbf{8}$ | A student does an experiment to determine the percentage by mass of |
| :--- | :--- | :--- | sodium chlorate(I), NaClO , in a sample of bleach solution.

Method:

- Dilute a $10.0 \mathrm{~cm}^{3}$ sample of bleach solution to $100 \mathrm{~cm}^{3}$ with distilled water.
- Transfer $25.0 \mathrm{~cm}^{3}$ of the diluted bleach solution to a conical flask and acidify using sulfuric acid.
- Add excess potassium iodide to the conical flask to form a brown solution containing $\mathrm{I}_{2}(\mathrm{aq})$.
- Add $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate solution $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ to the conical flask from a burette until the brown solution containing $\mathrm{I}_{2}(\mathrm{aq})$ becomes a colourless solution containing $\mathrm{l}^{-(\mathrm{aq})}$.

The student uses $33.50 \mathrm{~cm}^{3}$ of sodium thiosulfate solution.
The density of the original bleach solution is $1.20 \mathrm{~g} \mathrm{~cm}^{-3}$
The equations for the reactions in this experiment are

$$
\begin{gathered}
\mathrm{ClO}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}^{-(\mathrm{aq})} \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{I}_{2}(\mathrm{aq}) \\
2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}(\mathrm{aq})
\end{gathered}
$$

| 0 | 8 | 1 |
| :--- | :--- | :--- | original bleach solution.

Give your answer to 3 significant figures.
\qquad

| $\mathbf{0}$ | $\mathbf{8} .2$ The total uncertainty from two readings and an end point error in using a |
| :--- | :--- | :--- | :--- | burette is $\pm 0.15 \mathrm{~cm}^{3}$

What is the total percentage uncertainty in using the burette in this experiment?

Tick (\checkmark) one box.
0.45\%

Tick (\checkmark) one box.	[1 mark]	
0.45%	\square	
0.90%	\square	\square
1.34%	\square	

Turn over for the next question

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/1 - JUNE 2020

Question	Answers	Additional comments/Guidelines	Mark
08.1	$\mathrm{M} 1 \mathrm{n}\left(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right)=33.50 \times 0.100 \div 1000=\underline{0.00335}$ $\mathrm{M} 2 \mathrm{n}\left(\mathrm{I}_{2}\right)=0.00335 \div \mathbf{2}=0.001675$ (from eqn 2) $\mathrm{M} 3 \mathrm{n}\left(\mathrm{ClO}^{-}\right)$in $25 \mathrm{~cm}^{3}$ pipette $=0.001675($ from eqn 1$)$ $\mathrm{M} 4 \mathrm{n}\left(\mathrm{ClO}^{-}\right)$in $100 \mathrm{~cm}^{3}$ flask $=0.001675 \underline{\mathrm{x} 4}=0.00670$ $=n(\mathrm{NaClO})$ in original $10 \mathrm{~cm}^{3}$ sample M5 mass $(\mathrm{NaClO})=0.00670 \times 74.5=0.499 \mathrm{~g}$ M6 mass $($ bleach $)=10.0 \times 1.20=\underline{12} \mathrm{~g}$ M7 \% by mass of $\mathrm{NaClO}=\frac{0.499}{12} \times 100=4.16 \%$	$\begin{aligned} & M 2=M 1 \div 2 \\ & M 3=M 2 \\ & M 4=M 3 \times 4 \\ & M 5=M 4 \times 74.5 \\ & M 6=\text { mass of bleach } \\ & M 7=(M 5 \div M 6) \times 100 \text { to } 3 \text { significant figures } \\ & \text { Allow } 4.15 \% \text { to } 4.17 \% \end{aligned}$	
08.2	0.45\%		1

The isoprene monomer is a non-cyclic branched hydrocarbon that contains 88.2 \% carbon by mass.

The empirical formula of isoprene is the same as its molecular formula.

0	3	1
1	Deduce the molecular formula of isoprene and suggest a possible structure.	

Molecular formula \qquad

Structure

Question 3 continues on the next page

Question	Answers			Additional Comments/Guidelines	Mark
03.1		C	H	M1 for amounts 7.35 and 11.8	1
	\%mass	88.2	11.8		
	mol	$\frac{88.2}{12}$	$\frac{11.8}{1}$		
		$=7.35$	=11.8		
	\div smaller	$\frac{7.35}{7.35}$	$\frac{11.8}{7.35}$		1
	x5	$=1$ $=5$	$\begin{gathered} 1.61 \\ =8 \end{gathered}$		
	Empirical formula $=$ molecular formula $\mathrm{C}_{5} \mathrm{H}_{8}$			M3 for answer $\mathrm{C}_{5} \mathrm{H}_{8}$ only Allow alternatives	1
				$\mathrm{HC} \equiv \mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}$	1

| $\mathbf{1}$ | $\mathbf{0}$ Some compounds with different molecular formulas have the same relative molecular |
| :--- | :--- | :--- | mass to the nearest whole number.

$\begin{array}{lll}1 & 0 & 1\end{array}$ A dicarboxylic acid has a relative molecular mass of 118 , to the nearest whole number.

Deduce the molecular formula of the acid.

Molecular formula

| 1 | 0 | 2 |
| :--- | :--- | :--- | A student dissolved some of the dicarboxylic acid from Question 10.1 in water and made up the solution to $250 \mathrm{~cm}^{3}$ in a volumetric flask.

In a titration, a $25.0 \mathrm{~cm}^{3}$ sample of the acid solution needed $21.60 \mathrm{~cm}^{3}$ of $0.109 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution for neutralisation.

Calculate the mass, in g , of the dicarboxylic acid used.
Give your answer to the appropriate number of significant figures.

Question	Answers	Additional Comments/Guidelines	Mark
10.1	$\begin{aligned} & (\mathrm{COOH})_{2}=\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}=90 \\ & 118-90=28 \mathrm{OR} \mathrm{C}_{2} \mathrm{H}_{4} \\ & \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4} \end{aligned}$	Must be molecular formula Structural formula can score M1 \& M2	M1 M2 M3
10.2	$\begin{aligned} \text { Amount } \mathrm{NaOH} & =\left(21.60 \times 10^{-3}\right) \times 0.109 \\ & =2.3544 \times 10^{-3} \mathrm{~mol} \end{aligned}$ Amount $\mathrm{H}_{2} \mathrm{~A}$ in $25 \mathrm{~cm}^{3}=1.177 \times 10^{-3} \mathrm{~mol}$ Amount $\mathrm{H}_{2} \mathrm{~A}$ in $250 \mathrm{~cm}^{3}=1.177 \times 10^{-2} \mathrm{~mol}$ Mass $=1.39 \mathrm{~g}$ (Must be 3sf)	M1 for answer (to 3sfs min) $\begin{aligned} & M 2=0.5 \times M 1 \\ & M 3=M 2 \times 10 \\ & M 4=\text { answer to }(M 3 \times 118) \text { and must be } 3 s f \end{aligned}$	M1 M2 M3 M4

| 0 | 8 |
| :--- | :--- | represented as $\mathrm{H}_{3} \mathrm{Y} . x \mathrm{H}_{2} \mathrm{O}$

$\mathbf{0}$	$\mathbf{8} .1$	A 1.50 g sample of $\mathrm{H}_{3} \mathrm{Y} \cdot x \mathrm{H}_{2} \mathrm{O}$ contains 0.913 g of oxygen by mass. ${ }^{2}$.

The sample burns completely in air to form 1.89 g of CO_{2} and 0.643 g of $\mathrm{H}_{2} \mathrm{O}$
Show that the empirical formula of citric acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{4}$
$\begin{array}{llll}0 & 8 & 2 & \text { A } 3.00 \mathrm{~g} \text { sample of } \mathrm{H}_{3} \mathrm{Y} \cdot x \mathrm{H}_{2} \mathrm{O}\left(M_{\mathrm{r}}=210.0\right) \text { is heated to constant mass. }\end{array}$ The anhydrous $\mathrm{H}_{3} \mathrm{Y}$ that remains has a mass of 2.74 g

Show, using these data, that the value of $x=1$

Figure 5

0	8	3

propane-1, 2, 3-tricarboxylic acid

0	8	4	State the number of peaks you would expect in the ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathrm{H}_{3} \mathrm{Y}$

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/2 - JUNE 2020

08.2	M1 Amount $\mathrm{H}_{2} \mathrm{O}=0.26 / 18=0.014 \mathrm{~mol}$ M2 Amount $\mathrm{H}_{3} \mathrm{Y} . x \mathrm{H}_{2} \mathrm{O}=3 / 210=0.014 \mathrm{~mol}$ or Amount of $\mathrm{H}_{3} \mathrm{Y}=2.74 / 192=0.014 \mathrm{~mol}$ (hence ratio 1:1)	Common alternate method M1 Amount $\mathrm{H}_{3} \mathrm{Y} \cdot x \mathrm{H}_{2} \mathrm{O}=3 / 210=0.0143 \mathrm{~mol}$ M2 $\mathrm{Mr}_{\mathrm{r}} \mathrm{H}_{3} \mathrm{Y}=\frac{2.74}{0.0143}=192$ $M_{r} x \mathrm{H}_{2} \mathrm{O}=210-192=18$ (hence $x=1$)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
08.3	2(-) Hydroxy		1
08.4	Number of peaks $=4$	Allow Four	1

$\mathbf{0}$	$\mathbf{3}$ This question is about hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$

The half-equation for the oxidation of hydrogen peroxide is

$$
\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}
$$

Hair bleach solution contains hydrogen peroxide.
A sample of hair bleach solution is diluted with water.
The concentration of hydrogen peroxide in the diluted solution is 5.00% of that in the original solution.
A $25.0 \mathrm{~cm}^{3}$ sample of the diluted hair bleach solution is acidified with dilute sulfuric acid.
This acidified sample is titrated with $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII) solution.
The reaction is complete when $35.85 \mathrm{~cm}^{3}$ of the potassium manganate(VII) solution are added.

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{1}$ Give an ionic equation for the reaction between potassium manganate(VII) and |
| :--- | :--- | :--- | acidified hydrogen peroxide.

Calculate the concentration, in mol dm^{-3}, of hydrogen peroxide in the original hair bleach solution.
(If you were unable to write an equation for the reaction you may assume that the mole ratio of potassium manganate(VII) to hydrogen peroxide is $3: 4$ This is not the correct mole ratio.)
\qquad $\mathrm{mol} \mathrm{dm}^{-3}$

$\mathbf{0}$	$\mathbf{3} .2$	$\mathbf{2}$ State why an indicator is not added in this titration.

\qquad
\qquad

0	$\mathbf{3}$.	$\mathbf{3}$ Give the oxidation state of oxygen in hydrogen peroxide.

0	$\mathbf{3} .4$	$H y d r o g e n ~ p e r o x i d e ~ d e c o m p o s e s ~ t o ~ f o r m ~ w a t e r ~ a n d ~ o x y g e n . ~$

Give an equation for this reaction.
Calculate the amount, in moles, of hydrogen peroxide that would be needed to produce $185 \mathrm{~cm}^{3}$ of oxygen gas at 100 kPa and 298 K

The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Equation

Amount \qquad mol

Question	Answers	Additional Comments/Guidelines	Mark
03.1	M1 $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$ $\mathrm{M} 2 \mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)=\frac{0.020 \times 35.85}{1000}=\underline{7.17 \times 10^{-4}}(\mathrm{~mol})$ M3 $n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=7.17 \times 10^{-4} \times 5 / 2=1.793 \times 10^{-3}(\mathrm{~mol})$ M 4 conc $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right.$ in sample $)=\frac{1.793 \times 10^{-3}}{25 \times 10^{-3}}=0.0717\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ M5 original conc of $\mathrm{H}_{2} \mathrm{O}_{2}(=0.0717 \times \underline{20})=1.43\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	ignore state symbols $\begin{aligned} & M 3=M 2 \times 5 / 2 \\ & M 4=\frac{M 3 \times 1000}{25} \end{aligned}$ $\mathrm{M} 5=\frac{\mathrm{M} 4 \times 100}{5}$ allow 1.43-1.44 alternative answer using 3:4 ratio given on question paper $\begin{aligned} & \mathrm{M} 3=7.17 \times 10^{-4} \times 4 / 3=9.56 \times 10^{-4} \\ & \mathrm{M} 4=0.0382\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \mathrm{M} 5=0.765\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	1 1 1 1 1 1 AO2

Question	Answers	Additional Comments/Guidelines	Mark
03.2	KMnO_{4} is self-indicating or KMnO_{4} is no longer decolourised at end point or (solution) changes (from colourless) to (pale) pink/purple at end point		$\begin{gathered} 1 \\ \text { AO1 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
03.3	-1		1

Question	Answers	Additional Comments/Guidelines	Mark
03.4	M1 $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$	allow multiples ignore state symbols	1
	M2 V $=185 \times 10^{-6}\left(\mathrm{~m}^{3}\right)$ and $\mathrm{P}=100000(\mathrm{~Pa})$	unit conversions	1
	$\mathrm{M} 3 \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{100000 \times 185 \times 10^{-6}}{8.31 \times 298}$	rearrangement of ideal gas equation	1
	$\mathrm{M} 4 \mathrm{n}\left(\mathrm{O}_{2}\right)=7.47 \times 10^{-3}(\mathrm{~mol})$	calculation	1
	M5 $\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=\left(7.47 \times 10^{-3} \times 2\right)=0.0149(\mathrm{~mol})$	allow M4 $\times 2$ to 2 sig fig or more	1
		if incorrect rearrangement in M3 can score M1, M2 and M5	$\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \end{aligned}$

| 0 | $\mathbf{1} .3$ | 3 |
| :--- | :--- | :--- | potassium manganate(VII) by titration. The equation for this reaction is

$$
2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}
$$

A standard solution is made by dissolving 162 mg of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\left(\mathrm{M}_{\mathrm{r}}=134.0\right)$ in water and making up to $250 \mathrm{~cm}^{3}$ in a volumetric flask.
$25.0 \mathrm{~cm}^{3}$ of this solution and an excess of sulfuric acid are added to a conical flask. The mixture is warmed and titrated with potassium manganate(VII) solution.
The titration is repeated until concordant results are obtained.
The mean titre is $23.85 \mathrm{~cm}^{3}$
Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of the potassium manganate(VII) solution.

Question	Answers	Additional comments/Guidelines	Mark
1.3	$\begin{array}{ll} \text { M1 } & \text { amount of } \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\frac{0.162}{0.04 .0}=0.00121 \mathrm{~mol} \\ \text { M2 } & \text { stoichiometry }\left({ }_{5}^{2}\right)\left(4.84 \times 10^{-4}\right) \\ \text { M3 } & \text { scaling }(\div 10) \\ & =0.00121 \times{ }_{5}^{2} \div 10=4.84 \times 10^{-5} \mathrm{~mol} \\ \text { M4 } & \begin{array}{l} \text { concentration of } \mathrm{MnO}_{4}= \\ \\ \\ \\ \frac{4.84 \times 10^{-5}}{23.55}=0.00203 \mathrm{~mol} \mathrm{dm}^{-3} \\ 1000 \end{array} \end{array}$	$\begin{aligned} & \text { M1 } x_{5}^{2} \\ & \text { M2 } \div 10 \text { (conc/40) } \\ & \text { M3 } \times 1000 \\ & \text { Min } 23.85 \\ & \text { sig figs } \end{aligned}$	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 1 \end{array}$

| $\mathbf{0}$ | $\mathbf{2}$ Tschermigite is a hydrated, water-soluble mineral, with relative formula mass of 453.2 |
| :--- | :--- | :--- |

The formula of tschermigite can be represented as $\mathrm{M} . \mathrm{xH}_{2} \mathrm{O}$, where M represents all the ions present.

Table 4 shows its composition by mass.
Table 4

Element	\% by mass
N	3.09
H	6.18
Al	5.96
S	14.16
O	70.61

In an analysis, it is found that the mineral contains the ions $\mathrm{NH}_{4}{ }^{+}, \mathrm{Al}^{3+}$ and $\mathrm{SO}_{4}{ }^{2-}$
Calculate the empirical formula of tschermigite and the value of x in M. $x \mathrm{H}_{2} \mathrm{O}$
Describe the tests, with their results, including ionic equations, that would confirm the identities of the ions present.
[6 marks]
\qquad

Question		Answers	Additional Comments/Guidelines	Mark
02	This question is marked using levels of response. Refer to the Mark Scheme Instructions for examiners for guidance on how to mark it.		Indicative Chemistry content Stage 1 Formula (1a) divides $\%$ masses by A_{r} for each element ($\mathrm{N}=0.221 ; \mathrm{H}=6.18 ; \mathrm{Al}=0.221 ; \mathrm{S}=0.441 ; \mathrm{O}=4.41$) (1b) divides throughout by smallest and confirms formula as $\mathrm{NH}_{28} \mathrm{AlS}_{2} \mathrm{O}_{20}$ Correct formula ticks 1a and 1b irrespective of method (1c) $x=12$ Stage 2 Ion ID (2a) addition of $\mathrm{NaOH} / \mathrm{OH}^{-}$and warming gives gas that turns (damp) red litmus blue (= ammonia) showing $\mathrm{NH}_{4}{ }^{+}$(water bath = warm) (2b) white ppt with acidified $\mathrm{BaCl}_{2} / \mathrm{Ba}^{2+}=\mathrm{SO}_{4}{ }^{2-}$ (2c) addition of $\mathrm{NaOH} / \mathrm{OH}^{-}$until in excess gives white ppt that redissolves $=\mathrm{Al}^{3+}$ OR addition of carbonate giving white ppt and effervescence/fizzing/bubbles/gas formed Stage 3 Equations (Ignore state symbols) (3a) $\mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$ (3b) $\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}$ (3c) $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}$ Allow $\mathrm{Al}^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}$ (3d) $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ Allow $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}$etc. OR $2 \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow 2 \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ Equation with $\mathrm{CO}_{3}{ }^{2-}$ 'ticks' 3c AND 3d	
	Level 3 5-6 marks	All stages are covered and the explanation of each stage is correct and virtually complete Answer communicates the whole explanation, including equations, coherently and shows a logical progression through all three stages		
	Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages covered and the explanations are generally correct and virtually complete		$\begin{gathered} 6 \\ (2 \times \mathrm{AO} 2, \end{gathered}$
		Answer is coherent and shows some progression through all three stages. Some steps in each stage may be incomplete		$4 \times \mathrm{AO} 3)$
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete Answer shows some progression between two stages		
	Level 0 0 marks	Insufficient correct Chemistry to warrant a mark		

The Periodic Table of the Elements

* 58-71 Lanthanides
† 90-103 Actinides

$\begin{gathered} 140.1 \\ \mathbf{C e} \\ \text { cerium } \\ 58 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 140.9 \\ \mathbf{P r} \\ \text { praseodymium } \\ 59 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 144.2 \\ \text { Nd } \\ \text { neodymium } \\ 60 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline[145] \\ \text { Pm } \\ \text { promethium } \\ 61 \\ \hline \end{array}$	$\begin{gathered} 150.4 \\ \mathrm{Sm} \\ \text { samarium } \\ 62 \\ \hline \end{gathered}$	$\begin{gathered} 152.0 \\ \text { Eu } \\ \text { europium } \\ 63 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 157.3 \\ \text { Gd } \\ \text { gadolinium } \\ 64 \\ \hline \end{array}$	$\begin{gathered} 158.9 \\ \mathrm{~Tb} \\ \text { terbium } \\ 65 \\ \hline \end{gathered}$	$\begin{gathered} 162.5 \\ \text { Dy } \\ \text { dysprosium } \\ 66 \\ \hline \end{gathered}$	164.9 Ho holmium 67	$\begin{gathered} 167.3 \\ \text { Er } \\ \text { erbium } \\ 68 \\ \hline \end{gathered}$	$\begin{gathered} 168.9 \\ \mathrm{Tm} \\ \text { thulium } \\ 69 \\ \hline \end{gathered}$	$\begin{gathered} 173.0 \\ \text { Yb } \\ \text { ytterbium } \\ 70 \\ \hline \end{gathered}$	175.0 Lu lutetium 71
$\begin{gathered} 232.0 \\ \text { Th } \\ \text { thorium } \\ 90 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 231.0 \\ \mathrm{~Pa} \\ \text { protactinium } \\ 91 \end{array}$	$\begin{gathered} 238.0 \\ \text { uranium } \\ 92 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 237] \\ \mathbf{N p} \\ \text { neptunium } \\ 93 \end{array}$	[244] Pu plutonium 94	[243] Am americium 95	$\begin{gathered} {[247]} \\ \mathbf{C m} \\ \text { curium } \\ 96 \end{gathered}$	[247] Bk berkelium 97	$\begin{gathered} {[251]} \\ \mathbf{C f} \\ \text { californium } \\ 98 \\ \hline \end{gathered}$	$\begin{array}{\|c} {[252]} \\ \text { Es } \\ \text { einsteinium } \\ 99 \\ \hline \end{array}$	$\begin{gathered} {[257]} \\ \text { Fm } \\ \text { fermium } \\ 100 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} {[258]} \\ \mathbf{M d} \\ \text { mendelevium } \\ 101 \end{array}$	$\begin{gathered} {[259]} \\ \text { No } \\ \text { nobelium } \\ 102 \\ \hline \end{gathered}$	$\begin{gathered} {[262]} \\ \mathbf{L r} \\ \text { lawrencium } \\ 103 \\ \hline \end{gathered}$

