A' Level Chemistry Year 1

Unit 2: Amount Of Substance

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms

Take Time to Answer Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

		Do not write outside the
06	A student does an experiment to determine the percentage of copper in an alloy.	box
	The student	
	 reacts 985 mg of the alloy with concentrated nitric acid to form a solution (all of the copper in the alloy reacts to form aqueous copper(II) ions) 	
	 pours the solution into a volumetric flask and makes the volume up to 250 cm³ with distilled water 	
	 shakes the flask thoroughly 	
	 transfers 25.0 cm³ of the solution into a conical flask and adds an excess of potassium iodide 	
	 uses exactly 9.00 cm³ of 0.0800 mol dm⁻³ sodium thiosulfate (Na₂S₂O₃) solution to react with all the iodine produced. 	
	The equations for the reactions are	
	$2Cu^{2+} + 4l^- \rightarrow 2Cul + l_2$	
	$2S_2O_3^{2-} + I_2 \rightarrow 2I^- + S_4O_6^{2-}$	
0 6.1	Calculate the percentage of copper by mass in the alloy.	
	Give your answer to the appropriate number of significant figures. [6 marks]	
	% copper	
	··	

Question	Answers	Additional Comments/Guidelines	
	M1 Amount of $S_2O_3^{2-} = \frac{9.00 \times 0.0800}{1000} = 7.20 \times 10^{-4} \text{ mol}$		1
	(From equations mol $S_2O_3^{2-}$ = mol Cu^{2+}) M2 Amount of Cu^{2+} in 25 cm ³ = 7.20 x 10 ⁻⁴ mol	M2 = answer to M1 (1:1 ratio)	1
	M3 Amount of Cu ²⁺ in 250 cm ³ = 7.20 x 10^{-4} <u>x10</u> = 7.20 x 10^{-3} mol	M3 = M2 x 10	1
	M4 Mass of copper = 7.20×10^{-3} mol <u>x 63.5</u> = 0.457 g	M4 = M3 x 63.5	1
06.1	M5 mass = 0.985 g	M5 converting 985mg to g	1
	M6 % Cu = 0.457 x $\frac{100}{0.985}$ = 46.4 %	M6 is for the answer to 3 sf Allow % Cu = 457 x $\frac{100}{985}$ = 46.4 % for M5 and M6 Allow (M4 x1000)/985 x 100 for M5 and M6	1
06.2	Use more of the alloy Use a lower concentration of the thiosulfate solution/lower mass of $Na_2S_2O_3$ to make solution		1
06.3	Oxidizing agent	Allow electron acceptor	1
06.4	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹	Do not allow [Ar]3d ⁹	1
	Full (3)d (sub)shell or (3)d ¹⁰		1

	Full (3)d (sub)shell or (3)d ¹⁰		1
06.5	No (d-d) transitions possible/ cannot absorb visible/white light	M2 is dependent on M1	1
		Ignore reflects visible/white light	

08	A student does an experiment to determine the percentage by mass of sodium chlorate(I), NaClO, in a sample of bleach solution.	Do not v outside box
	Method:	
	 Dilute a 10.0 cm³ sample of bleach solution to 100 cm³ with distilled water. Transfer 25.0 cm³ of the diluted bleach solution to a conical flask and acidify using sulfuric acid. 	
	 Add excess potassium iodide to the conical flask to form a brown solution containing l₂(aq). 	
	 Add 0.100 mol dm⁻³ sodium thiosulfate solution (Na₂S₂O₃) to the conical flask from a burette until the brown solution containing l₂(aq) becomes a colourless solution containing l⁻(aq). 	
	The student uses 33.50 cm ³ of sodium thiosulfate solution.	
	The density of the original bleach solution is 1.20 g cm $^{-3}$	
	The equations for the reactions in this experiment are	
	$ClO^{\scriptscriptstyle-}(aq) + 2H^{\scriptscriptstyle+}(aq) + 2I^{\scriptscriptstyle-}(aq) \to Cl^{\scriptscriptstyle-}(aq) + H_2O(I) + I_2(aq)$	
	$2 S_2 O_3^{2-}(aq) + I_2(aq) \rightarrow 2 I^-(aq) + S_4 O_6^{2-}(aq)$	
08.1	Use all the information given to calculate the percentage by mass of NaClO in the original bleach solution.	
	Give your answer to 3 significant figures. [7 marks]	
	Percentage by mass	

0 8. **2** The total uncertainty from two readings and an end point error in using a burette is ± 0.15 cm³

What is the total percentage uncertainty in using the burette in this experiment?

Turn over ►

Do not write outside the box

8

[1 mark]

MARK SCHEME - A	-LEVEL	. CHEMISTRY -	7405/1 -	JUNE 2020

Question	Answers	Additional comments/Guidelines	Mark
	M1 n(S ₂ O _{3²⁻) = 33.50 x 0.100 \div1000 = <u>0.00335</u>}		1
	M2 n(I ₂) = 0.00335 ÷ 2 = 0.001675 (from eqn 2)	$M2 = M1 \div 2$	1
	M3 n(ClO ⁻) in 25 cm ³ pipette = 0.001675 (from eqn 1)	M3 = M2	1
	M4 n(ClO ⁻) in 100 cm ³ flask = 0.001675 $\underline{x 4}$ = 0.00670 = n(NaClO) in original 10cm ³ sample	M4 = M3 x 4	1
08.1	M5 mass (NaClO) = 0.00670 <u>x 74.5</u> = 0.499 g	M5 = M4 <u>x 74.5</u>	1
	M6 mass (bleach) = 10.0 x 1.20 = <u>12</u> g	M6 = mass of bleach	1
	M7 % by mass of NaClO = $\frac{0.499}{12} \times 100 = 4.16 \%$	M7 = (M5 \div M6) x 100 to 3 significant figures Allow 4.15% to 4.17%	1
08.2	0.45%		1

		Do not writ
03	The outer layers of some golf balls are made from a polymer called polyisoprene. The isoprene monomer is a non-cyclic branched hydrocarbon that contains 88.2 % carbon by mass. The empirical formula of isoprene is the same as its molecular formula.	outside the box
0 3.1	Deduce the molecular formula of isoprene and suggest a possible structure.	
	[4 marks]	
	Molecular formula	
	Structure	
	Question 3 continues on the next page	

Turn over 🕨

Question		A	nswers	Additional Comments/Guidelines	Mark
03.1	%mass mol ÷ smaller	C 88.2 88.2 12 =7.35 7.35	H 11.8 <u>11.8</u> 1 =11.8 11.8	M1 for amounts 7.35 and 11.8	1
03.1	x5	7.35 7.35 = 1 =5	<u>11.8</u> 7.35 <u>1.61</u> =8	M2 for process dividing M1 by smaller	1
	Empirical formul		L	M3 for answer C_5H_8 only	1
	M4 (must be bra	anched) _{H2C}	CH ₃ CH ₂	Allow alternatives $CH_2 = C = C + CH_3$ CH_3 CH_3	1
				$HC = CCH(CH_3)_2$	

	Some compounds with different molecular formulas have the same relative molecular mass to the nearest whole number. A dicarboxylic acid has a relative molecular mass of 118, to the nearest whole number. Deduce the molecular formula of the acid. [3 marks]	Do not write outside the box
	Molecular formula	
10.2	A student dissolved some of the dicarboxylic acid from Question 10.1 in water and made up the solution to 250 cm ³ in a volumetric flask. In a titration, a 25.0 cm ³ sample of the acid solution needed 21.60 cm ³ of 0.109 mol dm ⁻³ sodium hydroxide solution for neutralisation. Calculate the mass, in g, of the dicarboxylic acid used.	
	Give your answer to the appropriate number of significant figures. [4 marks]	
	Massg	

Question	Answers	Additional Comments/Guidelines	Mark
	$(COOH)_2 = C_2H_2O_4 = 90$		M1
10.1	$118 - 90 = 28 \text{ OR } C_2 H_4$		M2
10.1	C ₄ H ₆ O ₄	Must be molecular formula Structural formula can score M1 & M2	М3
	Amount NaOH = $(21.60 \times 10^{-3}) \times 0.109$		
	$= 2.3544 \times 10^{-3}$ mol	M1 for answer (to 3sfs min)	M1
10.2	Amount H ₂ A in 25cm ³ = 1.177×10^{-3} mol	$M2 = 0.5 \times M1$	M2
	Amount H ₂ A in 250 cm ³ = 1.177×10^{-2} mol	$M3 = M2 \times 10$	M3
	Mass = 1.39 g (Must be 3sf)	M4 = answer to (M3 \times 118) and must be 3sf	M4

			Do not wri outside th
0 8	This question is about citric acid, a hydrated tricarboxylic acid. Its formula c represented as $H_3Y.xH_2O$	an be	box
0 8.1	A 1.50 g sample of $H_3Y.xH_2O$ contains 0.913 g of oxygen by mass. The sample burns completely in air to form 1.89 g of CO_2 and 0.643 g of H_2	0	
	Show that the empirical formula of citric acid is $C_3H_5O_4$	[5 marks]	
		[o marks]	
08.2	A 3.00 g sample of $H_3Y.xH_2O$ (M_r = 210.0) is heated to constant mass. The anhydrous H_3Y that remains has a mass of 2.74 g		
	Show, using these data, that the value of $x = 1$	[2 marks]	
	Т	urn over 🕨	

	Figure 5 shows the structure of H_3Y	Do not write outside the box
	Figure 5	
	OH I	
	ноос соон	
	СООН	
0 8 . 3	Complete this IUPAC name for H ₃ Y [1 mark]	
	propane-1, 2, 3-tricarboxylic acid	
08.4	State the number of peaks you would expect in the ^{13}C NMR spectrum for H_3Y	
	[1 mark]	
		9

Question	Answers				Additional comments/Guidelines			Mark	
08.1	M2 Ama M3 Ama	ount $H_2O = \frac{0.643}{4}$	₁₄ = 0.043 = mol C / ₁₈ = 0.0357 mol x 2 = 0.0714 mol	O 0.057 1.33 4	M1 ma M2 ma M3 = 0 OR ma	ate method ass C = 1.89 – ass H = 1.5 – (0.0715 g	$(1.89 \times \frac{32}{44}) = 0.51$ $(1.89 \times \frac{32}{44}) = 0.51$ $(0.515 + 0.913)$ $643 - (0.643 \times \frac{16}{18})$ H $\frac{0.0715}{1} = 0.0715$ 1.66 5	5 g	1 1 1 1

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/2 – JUNE 2020

08.2	M1 Amount $H_2O = {}^{0.26}/_{18} = 0.014 \text{ mol}$ M2 Amount $H_3Y.xH_2O = {}^{3}/_{210} = 0.014 \text{ mol}$ or Amount of $H_3Y = 2.74/192 = 0.014 \text{ mol}$ (hence ratio 1:1)	Common alternate method M1 Amount $H_3Y.xH_2O = {}^{3}\!/_{210} = 0.0143$ mol M2 M_r $H_3Y = {}^{2.74}_{0.0143} = 192$ M_r $xH_2O = 210 - 192 = 18$ (hence $x = 1$)	1
08.3	2(-) Hydroxy		1
08.4	Number of peaks = 4	Allow Four	1

0 3	This question is about hydrogen peroxide, H ₂ O ₂
	The half-equation for the oxidation of hydrogen peroxide is
	$H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$
	Hair bleach solution contains hydrogen peroxide.
	A sample of hair bleach solution is diluted with water. The concentration of hydrogen peroxide in the diluted solution is 5.00% of that in the original solution. A 25.0 cm ³ sample of the diluted hair bleach solution is acidified with dilute sulfuric acid. This acidified sample is titrated with 0.0200 mol dm ⁻³ potassium manganate(VII) solution. The reaction is complete when 35.85 cm ³ of the potassium manganate(VII) solution are added.
0 3.1	Give an ionic equation for the reaction between potassium manganate(VII) and acidified hydrogen peroxide.
	Calculate the concentration, in mol dm ⁻³ , of hydrogen peroxide in the original hair bleach solution.
	(If you were unable to write an equation for the reaction you may assume that the mole ratio of potassium manganate(VII) to hydrogen peroxide is 3:4 This is not the correct mole ratio.)
	[5 marks]
	Concentration mol dm ⁻³

ſ

03.2	State why an indicator is not added in this titration.	[1 mark]	Do not write outside the box
03.3	Give the oxidation state of oxygen in hydrogen peroxide.	[1 mark]	
0 3.4	Hydrogen peroxide decomposes to form water and oxygen.		
	Give an equation for this reaction.		
	Calculate the amount, in moles, of hydrogen peroxide that would be needed produce 185 cm ³ of oxygen gas at 100 kPa and 298 K	to	
	The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$	[5 marks]	
	Equation		
	Amount	_ mol	
		urn over ►	

i urn over

Question	Answers	Additional Comments/Guidelines	Mark
	M1 2MnO ₄ ⁻ + 6H ⁺ + 5H ₂ O ₂ → 2Mn ²⁺ + 8H ₂ O + 5O ₂	ignore state symbols	1
	M2 n(MnO ₄ ⁻) = $\frac{0.020 \times 35.85}{1000}$ = $\frac{7.17 \times 10^{-4}}{1000}$ (mol)		1
	M3 n(H ₂ O ₂) = 7.17 × 10 ⁻⁴ × 5/2 = 1.793 × 10 ⁻³ (mol)	$M3 = M2 \times 5/2$	1
	M4 conc (H ₂ O ₂ in sample) = $\frac{1.793 \times 10^{-3}}{25 \times 10^{-3}}$ = 0.0717 (mol dm ⁻³)	$M4 = \frac{M3 \times 1000}{25}$	1
03.1	M5 original conc of H_2O_2 (= 0.0717 × 20) = 1.43 (mol dm ⁻³)	$M5 = \frac{M4 \times 100}{5}$ allow 1.43–1.44	1 AO2
		alternative answer using 3:4 ratio given on question paper	
		$M3 = 7.17 \times 10^{-4} \times 4/3 = 9.56 \times 10^{-4}$ M4 = 0.0382 (mol dm ⁻³) M5 = 0.765 (mol dm ⁻³)	

Question	Answers	Additional Comments/Guidelines	Mark
03.2	KMnO ₄ is self-indicating or KMnO ₄ is no longer decolourised at end point or (solution) changes (from colourless) to (pale) pink/purple at end point		1 AO1

Question	Answers	Additional Comments/Guidelines	Mark
03.3	-1		1 AO2

Question	Answers	Additional Comments/Guidelines	Mark
	$M1 2H_2O_2 \rightarrow 2H_2O + O_2$	allow multiples ignore state symbols	1
	M2 V = 185 × 10 ⁻⁶ (m ³) <u>and</u> P = 100 000(Pa)	unit conversions	1
02.4	M3 n = $\frac{PV}{RT}$ = $\frac{100\ 000 \times 185 \times 10^{-6}}{8.31 \times 298}$	rearrangement of ideal gas equation	1
03.4	M4 $n(O_2) = 7.47 \times 10^{-3} \pmod{3}$	calculation	1
	M5 $n(H_2O_2) = (7.47 \times 10^{-3} \times 2) = 0.0149 \text{ (mol)}$	allow M4 \times 2 to 2 sig fig or more	1
		if incorrect rearrangement in M3 can score M1, M2 and M5	AO1 AO2

01.3 Sodium ethanedioate is used to find the concentration of solutions of potassium manganate(VII) by titration. The equation for this reaction is

 $2 \text{ MnO}_4^- + 16 \text{ H}^+ + 5 \text{ C}_2\text{O}_4^{2-} \rightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O} + 10 \text{ CO}_2$

A standard solution is made by dissolving 162 mg of $Na_2C_2O_4$ ($M_r = 134.0$) in water and making up to 250 cm³ in a volumetric flask.

25.0 cm³ of this solution and an excess of sulfuric acid are added to a conical flask. The mixture is warmed and titrated with potassium manganate(VII) solution. The titration is repeated until concordant results are obtained. The mean titre is 23.85 cm³

Calculate the concentration, in mol dm⁻³, of the potassium manganate(VII) solution. [4 marks]

Concentration

Do not write outside the

box

Question	Answers	Additional comments/Guidelines	Mark
1.3	M1 amount of Na ₂ C ₂ O ₄ = $\frac{0.162}{134.0}$ = 0.00121 mol		1
	M2 stoichiometry $\binom{2}{5}$ (4.84 x 10 ⁻⁴)	M1 x $\frac{2}{5}$	1
	M3 scaling (÷10) = $0.00121 \times \frac{2}{5} \div 10 = 4.84 \times 10^{-5}$ mol	M2 $\div 10$ (conc/40)	1
	M4 concentration of MnO ₄ ⁻ = $\frac{4.84 \times 10^{-5}}{23.85} = 0.00203 \text{ mol dm}^{-3}$	M3 x 1000 23.85 Min 2 sig figs	1

0 2 Tschermigite is a hydrated, water-soluble mineral, with relative formula mass of 453.2

The formula of tschermigite can be represented as $M.xH_2O$, where M represents all the ions present.

Table 4 shows its composition by mass.

	-
Element	% by mass
Ν	3.09
Н	6.18
Al	5.96
S	14.16
0	70.61

Table 4

In an analysis, it is found that the mineral contains the ions $NH_4{}^{\scriptscriptstyle +},\,Al^{3+}$ and $SO_4{}^{2-}$

Calculate the empirical formula of tschermigite and the value of x in M.xH₂O

Describe the tests, with their results, including ionic equations, that would confirm the identities of the ions present.

[6 marks]

0 8

Question		Answers	Additional Comments/Guidelines	Mark
	Scheme Instructions for examiners for guidance on how to mark it.		Indicative Chemistry content	
	Level 3 5-6 marks	All stages are covered and the explanation of each stage is correct and virtually complete Answer communicates the whole explanation, including equations, coherently and shows a logical progression through all three stages	Stage 1 Formula(1a) divides % masses by A_r for each element(N = 0.221; H = 6.18; Al = 0.221; S = 0.441; O = 4.41)(1b) divides throughout by smallest and confirmsformulaformulaas NH ₂₈ AlS ₂ O ₂₀ Correct formula ticks 1a and 1b irrespective of method(1c) $x = 12$	
02	Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages covered and the explanations are generally correct and virtually complete Answer is coherent and shows some progression through all three stages. Some steps in each stage may be incomplete	 Stage 2 Ion ID (2a) addition of NaOH/OH⁻ and warming gives gas that turns (damp) red litmus blue (= ammonia) showing NH₄⁺ (water bath = warm) (2b) white ppt with acidified BaCl₂/Ba²⁺ = SO₄²⁻ (2c) addition of NaOH/OH⁻ until in excess gives white ppt that redissolves = Al³⁺ 	6 (2 x AO2, 4 x AO3)
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuraciesOR only one stage is covered but the explanation is generally correct and virtually completeAnswer shows some progression between two stages	OR addition of carbonate giving white ppt and effervescence/fizzing/bubbles/gas formed Stage 3 Equations (Ignore state symbols) (3a) $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$ (3b) $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$ (3c) $AI(H_2O)_6^{3+} + 3 OH^- \rightarrow AI(H_2O)_3(OH)_3 + 3 H_2O$ Allow $AI^{3+} + 3 OH^- \rightarrow AI(OH)_3$	
	Level 0 0 marks	Insufficient correct Chemistry to warrant a mark	(3d) $AI(H_2O)_3(OH)_3 + OH^- \rightarrow AI(H_2O)_2(OH)_4^- + H_2O$ Allow $AI(OH)_3 + OH^- \rightarrow AI(OH)_4^-$ etc. OR $2AI(H_2O)_6^{3+} + 3CO_3^{2-} \rightarrow 2AI(H_2O)_3(OH)_3 + 3CO_2 + 3H_2O$ Equation with CO_3^{2-} 'ticks' 3c AND 3d	

The Periodic Table of the Elements

1	2											3	4	5	6	7	0
								1									(18)
							1.0 H										4.0 He
(1)	(2)			Key	у		hydrogen 1					(13)	(14)	(15)	(16)	(17)	helium 2
6.9 Li	9.0 Be		relative atomic mass symbol									10.8 B	12.0 C	14.0 N	16.0 O	19.0 F	20.2 Ne
lithium 3	bery ll ium 4		name atomic (proton) number									boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23.0 Na	24.3 Mg											27.0	28.1 Si	31.0 P	32.1 S	35.5 Cl	39.9
sodium 11	magnesium 12	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	Al aluminium 13	silicon 14	P phosphorus 15	ອ sulfur 16	chlorine 17	Ar argon 18
39.1	40.1	45.0	47 <u>.</u> 9 Ti	50.9 V	52.0	54.9	55.8 Fe	58.9 Co	58.7	63.5	65.4	69.7	72.6 Ge	74.9	79.0 Se	79.9	83.8
K potassium	Ca calcium 20	SC scandium 21	titanium 22	vanadium	Cr chromium	Mn manganese	iron	cobalt 27	Ni nickel	Cu copper	Zn zinc	Ga gallium	germanium 32		selenium 34	Br bromine 35	Kr krypton
<u>19</u> 85.5	87.6	88.9	91.2	<u>23</u> 92.9	24 96.0	<u>25</u> [97]	<u>26</u> 1 <u>0</u> 1.1	102.9	<u>28</u> 106.4	29 107.9	<u>30</u> 112.4	<u>31</u> 114.8	118.7	33 121.8	127.6	126.9	36 131.3
Rb rubidium	Sr strontium	Y yttrium	Zr zirconium	Nb niobium	Mo molybdenum		Ru ruthenium	Rh rhodium	Pd pa ll adium	Ag silver	Cd cadmium	in indium	Sn tin	Sb antimony	Te tellurium	iodine	Xe xenon
<u> </u>	<u>38</u> 137.3	<u>39</u> 138.9	40 178.5	<u>41</u> 180.9	42 183.8	<u>43</u> 186.2	44 190.2	45 192.2	<u>46</u> 195.1	47 197.0	48 200.6	49 204.4	50 207.2	51 209.0	<u>52</u> [209]	<u>53</u> [210]	54 [222]
Cs	Ba	La *	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	Τl	Pb	Bi	Po	At	Rn
caesium 55	barium 56	lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	tha ll ium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr	[226] Ra	[227] Ac †	[267] Rf	[270] Db	[269] Sg	[270] Bh	[270] Hs	[278] Mt	[281] Ds	[281] Rg	[285] Cn	[286] Nh	[289] Fl	[289] Mc	[293] Lv	[294] Ts	[294] Og
francium 87	radium 88	actinium 89	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110				flerovium 114	moscovium 115		tennessine 117	oganesson 118
			,														· · · · · ·
* 58 - 71 Lanthanides			140.1 Ce	140.9 Pr	144.2 Nd	[145] Pm	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 Dy	164.9 Ho	167.3 Er	168.9 Tm	173.0 Yb	175.0 Lu	
			cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
			-	<u>58</u> 232.0	59 231.0	60 238.0	61 [237]	62 [244]	63 [243]	<u>64</u> [247]	65 [247]	66 [251]	67 [252]	68 [257]	<u>69</u> [258]	70 [259]	71 [262]
† 90 – 103 Actinides				Th	Pa	U	Ňp	Pu	Am	Ċm	Bk	Cf	Es	Fm	Md	No	Lr
,				thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrencium 103