A' Level Chemistry Year 1

Unit 2: AOS PV=nRT

Summer Examination Revision Pack

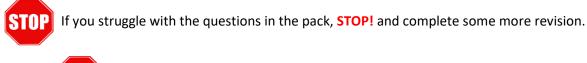
The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms Take Time to Answer Use Paper & Calculator Work It Out Review Missed Marks


Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

The Periodic Table of the Elements

1	2											3	4	5	6	7	0
								1									(18)
							1.0 H										4.0 He
(1)	(2)			Key			hydrogen 1					(13)	(14)	(15)	(16)	(17)	helium 2
6.9 Li	9.0 Be		relat	ive atomic symbo l	mass							10.8 B	12.0 C	14.0 N	16.0 O	19.0 F	20.2 Ne
lithium 3	beryllium 4		atomi	name c (proton) r								boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23.0 Na	24.3 Mg			/////////								27.0	28.1	31.0	32.1	35.5	39.9
sodium	magnesium	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	Al aluminium	Si silicon	P phosphorus	S sulfur	Cl chlorine	Ar argon
<u>11</u> 39.1	12 40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	<u>13</u> 69.7	14 72.6	15 74.9	<u>16</u> 79.0	<u>17</u> 79.9	18 83.8
K potassium	Ca calcium	Sc scandium	Ti titanium	V vanadium	Cr chromium	Mn manganese	Fe iron	Co cobalt	Ni nickel	Cu copper	Zn zinc	Ga ga ll ium	Ge germanium		Se selenium	Br bromine	Kr krypton
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.5 Rb	87.6 Sr	88.9 Y	91.2 Zr	92.9 Nb	96.0 Mo	[97] Tc	101.1 Ru	102.9 Rh	106.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9	131.3 Xe
rubidium	strontium	yttrium	Zi zirconium	niobium	molybdenum		ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[209]	[210]	[222]
Cs caesium	Ba barium	La * Ianthanum	Hf hafnium	Ta tantalum	W tungsten	Re rhenium	Os osmium	ir iridium	Pt platinum	Au gold	Hg mercury	Tl tha ll ium	Pb lead	Bi bismuth	Po polonium	At astatine	Rn radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
[223]	[226]	[227]	[267]	[270]	[269]	[270]	[270]	[278]	[281]	[281]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
Fr	Ra radium	Ac † actinium	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
francium 87	88	89	104	105	106	107	hassium 108	meitnerium 109	110	111	copernicium 112	nihonium 113	flerovium 114	moscovium 115	116	tennessine 117	oganesson 118
				140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
* 58 – 7	1 Lantha	nides		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	_ Dy	Ho	Er	Tm	Yb	Lu
				cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
				232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]
† 90 – 1 0	03 Actini	ides		Th	Pa	U	Np	Pu	Am	Ċm	Bk	Cf	Es	Fm	Md	No	Lr
1 30 - 10		000		thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrencium 103
			l	90	91	92	93	94	90	90	97	90	99	100	101	102	103

08.2	When 250 mg of sodium were added to 500 cm ³ of water at 25 $^{\circ}$ C a gas wa produced.	as								
	Give an equation for the reaction that occurs. Calculate the volume, in cm ³ , of the gas formed at 101 kPa									
	The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$	[6 marks]								
	Equation									
	Volume	cm ³								
08.3	Calculate the concentration, in mol dm^{-3} , of sodium ions in the solution protite reaction in Question 08.2 .									
		[1 mark]								
	Concentration	mol dm ⁻³								

08.1 cont.	Level 0	Insufficient correct chemistry to gain a mark.						
	0 marks							
	M1 Na + F	$H_2O \rightarrow NaOH + \frac{1}{2}H_2$	Allow multiples	1				
	M2 (Mass	Na = 0.250 g so moles Na = 0.250/23.0) = 0.0109	CE: If not divided by 23, max 3/5 calculation marks – M3, M4 and M5					
			AE: If not divided by 1000 and final answer is 1.33 x 10^5 cm ³ 4/5					
08.2	M3 moles	$H_2 = 5.43 \times 10^{-3} \text{ to } 5.45 \times 10^{-3}$	M3 = M2 /2 CE: If incorrect ratio used max 3/5 calculation marks - M2, M4 and M5					
	M4 T = 29	8 (K) and P = 101000 (Pa)		1				
	M5 V = nR	T/P or (5.435 x 10^{-3} x 8.31 x 298)/101000 or 1.33 x 10^{-4} (m ³)		1				
	M6 V = 13	3 – 134 cm ³	Allow to 2 significant figures or more	1				
08.3	Conc = 0.01	09/ 500 x $10^{-3} = 0.0217 \cdot 0.022 \text{ (mol dm}^{-3}\text{)}$	Allow M2 from question 08.2 / 0.5	1				

1 0.1

A student added 627 mg of hydrated sodium carbonate (Na₂CO₃.*x*H₂O) to 200 cm³ of 0.250 mol dm⁻³ hydrochloric acid in a beaker and stirred the mixture. After the reaction was complete, the resulting solution was transferred to a volumetric flask, made up to 250 cm³ with deionised water and mixed thoroughly. Several 25.0 cm³ portions of the resulting solution were titrated with 0.150 mol dm⁻³ aqueous sodium hydroxide. The mean titre was 26.60 cm³ of aqueous sodium hydroxide.

Calculate the value of x in Na₂CO₃.xH₂O Show your working. Give your answer as an integer.

[7 marks]

Value of x_____

7

END OF QUESTIONS

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/1 – JUNE 2018

Question	Answers	Additional Comments/Guidance	Mark
	M1 HCl added = 0.050 mol and NaOH used in titration = 3.99×10^{-3} mol		1
	M2 So moles that would be needed to neutralise total excess HCl = $3.99 \times 10^{-3} \times 10^{-2} = 3.99 \times 10^{-2} \text{ mol}$	Alternative: divide moles HCl by $10 = 0.005$ and $0.005 - 3.99 \times 10^{-3} = 0.00101$	1
	M3 Therefore the moles of HCl reacted with the Na ₂ CO ₃ .xH ₂ O = $0.050 - 3.99 \times 10^{-2} = 0.0101$ mol	Alternative: 0.00101 x 10 to produce 0.0101	1
10.1	M4 So moles $Na_2CO_3.xH_2O$ reacted with the HCl = 0.0101 /2 = 5.05 x 10 ⁻³ mol		1
	M5 Conversion of mg to $g = 0.627 (g)$ or 627 x 10 ⁻³ (g)		1
	M6 $xH_2O = 0.627/5.05 \times 10^{-3} - 106.0 = 18$ (.16)	Alternative: mass Na_2CO_3 that reacted with the HCl 5.05 x 10 ⁻³ x106.0 = 0.5353 g and mass $H_2O = 0.627-0.5353 = 0.0917$ g	1
	M7 so x = <u>1</u>	Alternative: $0.0917 / 18.0 = 5.094 \times 10^{-3}$ so ratio Na_2CO_3 to $H_2O = 1:1.009$ ie $1:1$ so $x = 1$	1
Total			7

[4 marks]

06	. 6	lodine vaporises easily.
----	-----	--------------------------

Calculate the volume, in cm $^{3},$ that 5.00 g of iodine vapour occupies at 185 $^{\circ}\text{C}$ and 100 kPa

The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Give your answer to 3 significant figures.

Volume _____ cm³

	M1: n = (5.00/253.8) = 0.0197 mol	Allow 254 If 126.9 or 127 used lose M1 only	1
	M2: T = 458 K and P = 100 000 Pa		1
06.6	M3: V = $\frac{nRT}{P}$ or $\frac{0.0197 \times 8.31 \times 458}{100\ 000}$ or 7.50 x 10 ⁻⁴ (m ³)	M3 If rearrangement incorrect can only score M1 and M2	1
	M4: V =750 (cm ³)	M4: Allow M3 x 10 ⁶ M4: Allow 749	1

1	
1 0	This question is about six isomers of $C_6H_{10}O_2$
10.1	Give the full IUPAC name of isomer P .
	$CH_{3}CH_{2}$ $COOH$ $CH_{3}C=C$ CH_{3} CH_{3}
	c=c
	H CH ₃ P
	[1 mark]
10.2	A sample of P was mixed with an excess of oxygen and the mixture ignited. After cooling to the original temperature, the total volume of gas remaining was 335 cm^3
	When this gas mixture was passed through aqueous sodium hydroxide, the carbon dioxide reacted and the volume of gas decreased to 155 cm ³
	Both gas volumes were measured at 25 °C and 105 kPa
	Write an equation for the combustion of ${\bf P}$ in an excess of oxygen and calculate the mass, in mg, of ${\bf P}$ used.
	The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
	[5 marks]
	Mass of P used mg

Question	Answers	Mark	Additional Comments/Guidance
10.1	Z-2-methylpent-2-en (-1-) oic acid	1	Ignore missing hyphens or extra commas, spaces, hyphens
10.2	$C_6H_{10}O_2 + 7\frac{1}{2}O_2 \rightarrow 6CO_2 + 5H_2O$	M1	Allow multiple
	Volume of CO_2 formed = 180 cm ³	M2	If incorrect volume:155 gives 125mg / 335 gives 270mg could score M1,M3,M4 – max 3
			If incorrect volume from AE then penalise M2 and mark on (Final answer is 0.806 x their volume)
	Mol carbon dioxide = $pV/RT = \frac{105000 \times (180 \times 10^{-6})}{8.31 \times 298}$ = 7.632 × 10 ⁻³	M3	If unit error in p, V or T lose M3 and M5 If incorrect rearrangement lose M3 and M5 If both errors seen then no further marks
	Mol P , $C_6H_{10}O_2$ used = 7.632 × 10 ⁻³ / 6 = 1.272 × 10 ⁻³	M4	M3 divided by 6 If wrong no further marks
	Mass P used = $1.272 \times 10^{-3} \times 114(.0)$ g = 145 mg	M5	Mark for answer (allow ans to 2 sf) Check chemical equation before awarding final mark

$$Fe(s) + 2 HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$$

A 0.998 g sample of pure iron is added to 30.0 cm^3 of $1.00 \text{ mol } \text{dm}^{-3}$ hydrochloric acid.

One of these reagents is in excess and the other reagent limits the amount of hydrogen produced in the reaction.

Calculate the maximum volume, in m³, of hydrogen gas produced at 30 °C and 100 kPa.

Give your answer to 3 significant figures.

In your answer you should identify the limiting reagent in the reaction.

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[6 marks]

Do not write outside the

box

Turn over ►

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/1 – JUNE 2021

Question	Answers	Additional comments/Guidelines	Mark
	M1 Amount of Fe = 0.998 ÷ 55.8 = 0.0179 mol		1
	M2 Amount of HCl = 0.0300 mol		1
	M3 HCl is the limiting reagent	M4 = M2÷2	1
04.4	M4 Amount of H_2 produced = 0.0150 mol		1
	M5 T = 303 K P = 100 000 Pa	M6 V (= <u>M4 × 8.31 × 303</u>) (m ³)	1
	M6 V $\left(= \frac{0.0150 \times 8.31 \times 303}{100\ 000}\right) = 3.78 \times 10^{-4} \text{ (m}^3\text{)}$	100 000	1

The Periodic Table of the Elements

1	2											3	4	5	6	7	0
								1									(18)
							1.0 H										4.0 He
(1)	(2)			Key			hydrogen 1					(13)	(14)	(15)	(16)	(17)	helium 2
6.9 Li	9.0 Be		relat	ive atomic symbo l	mass							10.8 B	12.0 C	14.0 N	16.0 O	19.0 F	20.2 Ne
lithium 3	beryllium 4		atomi	name c (proton) r								boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23.0 Na	24.3 Mg			/////////								27.0	28.1	31.0	32.1	35.5	39.9
sodium	magnesium	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	Al aluminium	Si silicon	P phosphorus	S sulfur	Cl chlorine	Ar argon
<u>11</u> 39.1	12 40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	<u>13</u> 69.7	14 72.6	<u>15</u> 74.9	<u>16</u> 79.0	<u>17</u> 79.9	18 83.8
K potassium	Ca calcium	Sc scandium	Ti titanium	V vanadium	Cr chromium	Mn manganese	Fe iron	Co cobalt	Ni nickel	Cu copper	Zn zinc	Ga ga ll ium	Ge germanium		Se selenium	Br bromine	Kr krypton
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.5 Rb	87.6 Sr	88.9 Y	91.2 Zr	92.9 Nb	96.0 Mo	[97] Tc	101.1 Ru	102.9 Rh	106.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9	131.3 Xe
rubidium	strontium	yttrium	Zi zirconium	niobium	molybdenum		ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[209]	[210]	[222]
Cs caesium	Ba barium	La * Ianthanum	Hf hafnium	Ta tantalum	W tungsten	Re rhenium	Os osmium	ir iridium	Pt platinum	Au gold	Hg mercury	Tl tha ll ium	Pb lead	Bi bismuth	Po polonium	At astatine	Rn radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
[223]	[226]	[227]	[267]	[270]	[269]	[270]	[270]	[278]	[281]	[281]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
Fr	Ra radium	Ac † actinium	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
francium 87	88	89	104	105	106	107	hassium 108	meitnerium 109	110	111	copernicium 112	nihonium 113	flerovium 114	moscovium 115	116	tennessine 117	oganesson 118
				140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
* 58 – 7	1 Lantha	nides		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	_ Dy	Ho	Er	Tm	Yb	Lu
				cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
				232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]
† 90 – 1 0	03 Actini	ides		Th	Pa	U	Np	Pu	Am	Ċm	Bk	Cf	Es	Fm	Md	No	Lr
1 30 - 10		000		thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrencium 103
			l	90	91	92	93	94	90	90	97	90	99	100	101	102	103