A' Level Chemistry
 Year 1

Unit 3: Bonding (Shapes)

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{4}$ Sodium reacts with ammonia to form the compound NaNH_{2} that contains the |
| :--- | :--- | :--- | $\mathrm{NH}_{2}{ }^{-}$ion.

Draw the shape of the NH_{2}^{-}ion.
Include any lone pairs of electrons that influence the shape.
Predict the bond angle.
Justify your prediction.
Shape

Bond angle
Justification \qquad
\qquad
\qquad
\qquad
\qquad

0	8	1
Draw a diagram to show the strongest type of interaction between two molecules of		

Include all lone pairs and partial charges in your diagram.

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2}$ Methoxymethane $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$ is an isomer of ethanol... .0

Table 5 shows the boiling points of ethanol and methoxymethane.

Table 5

Compound	Boiling point $/{ }^{\circ} \mathbf{C}$
ethanol	78
methoxymethane	-24

In terms of the intermolecular forces involved, explain the difference in boiling points.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

Question	Answers	Additional Comments/Guidelines	Mark
08.1		M1 two lone pairs on each O atom and $\delta+$ and δ - on each $\mathrm{H}-\mathrm{O}$ bond M2 dotted/broken line shown between lone pair on one molecule and the correct H on another M3 O $\quad \cdots \cdots$. $\mathrm{H}-\mathrm{O}$ in straight line, dependent on M2 Ignore any partial charges on $\mathrm{C}-\mathrm{H}$ or $\mathrm{C}-\mathrm{O}$ bonds For straight line in M3, allow a deviation of up to 15° If a different molecule containing hydrogen bonding due to $\mathrm{O}-\mathrm{H}$ bond drawn (e.g. methanol, water) or an incorrect attempt at the structure of ethanol, then maximum of 2 marks (i.e. only penalise if would score all three marks otherwise)	1 1 1
08.2	Hydrogen bonds (between ethanol molecules) (permanent) dipole-dipole OR van der Waals force (between methoxymethane molecules) Hydrogen bonds are stronger/est intermolecular force	Allow vdW Allow more energy to break/overcome hydrogen bonding Allow converse arguments	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

08.3		POCl_{3} : allow any shape showing 1 double bond between P and O and $3 \mathrm{P}-\mathrm{Cl}$ bonds $\mathrm{ClF}_{4}{ }^{-}$: allow any shape showing $4 \mathrm{Cl}-\mathrm{F}$ bonds and 2 Ione pairs	1 1 1 1 1 1

