A' Level Chemistry Year 1

Unit 5: Halogenoalkanes & Alkenes

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms Take Time to Answer

Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

01.4	When Reaction 2 is carried out under different conditions, a compound with molecular formula C ₉ H ₂₁ N is produced. Draw the skeletal formula of the compound. Identify the functional group in the compound including its classification. [2 marks] Skeletal formula
0 1 . 5	Functional group including classification
0 1 . 6	Name and outline a mechanism for Reaction 3. [4 marks] Name of mechanism Mechanism

13

Question	Ar	nswers	Mark	Additional Comments/Guidance
01.1	$\begin{array}{cccc} H & H & H \\ H - \overset{I}{C} & \overset{I}{\longrightarrow} \overset{I}{C} & \overset{I}{\longrightarrow} \overset{I}{C} & \overset{I}{\longrightarrow} O - H \\ \overset{I}{H} & \overset{I}{H} & \overset{I}{H} \end{array}$		1	Must be displayed
01.2	Nucleophilic substitution Excess NH ₃		1 1	Ignore aqueous, alcoholic, conc, dil, temp, heat, pressure
	Amount of CH ₃ CH ₂ CH ₂ Br	25.2/122.9 (=0.205) (mol)	M1	If either Mr incorrect or used incorrectly then only award 1 mark for 75% yield calculation (ignore rounding to 123 for $CH_3CH_2CH_2Br$)
01.3	Amount of CH ₃ CH ₂ CH ₂ NH ₂	M1 x 0.75 (= 0.154) (mol)	M2	OR Max mass amine = M1 x 59.0 (= 12.1) (g)
	Mass $CH_3CH_2CH_2NH_2$	M2 x 59.0 = 9.07g Must be 3sf	МЗ	Actual mass = M2 x $0.75 = 9.07g$ Must be 3sf Allow 9.09 but if 9.08 check for AE 18.9 scores 1 for 75%

01.4		1	Must be skeletal Ignore lone pair
	tertiary amine or 3° amine (only award if a tertiary amine shown)	1	

Question	Answers	Mark	Additional Comments/Guidance
01.5	NaOH/ ethanol or KOH / ethanol (both required)	1	Not aqueous Ignore heat, temp, conc., dil, Accept alcoholic for ethanol
01.6	(Basic) Elimination H ₃ C + H + H + H + H + H + H + H + H + H +	1	Also credit E1 mechanism $H_{3C} \xrightarrow{H}_{H} \xrightarrow{H}_{G} \xrightarrow{H}_{G} \xrightarrow{H}_{G} \xrightarrow{H}_{M_{3}C} \xrightarrow{H}_{M_{3}C} \xrightarrow{H}_{M_{3}C} \xrightarrow{H}_{M_{2}C} \xrightarrow{H}_{H}$ M3 curly arrow for loss of Br ⁻ & structure of carbocation M1 arrow from lone pair on <u>O</u> of hydroxide to H (or to space mid way between hydroxide O and H) (same as E2) M2 arrow from C-H bond to C-C bond (same as E2)
Total		13	

0 2	Halogenoalkanes are useful com	pounds in synthesis.	A reaction pathway is shown.
	CH ₂ (OH)CH(CH ₃)CH ₂ Br	Reaction 1 NaOH	CH ₂ (OH)CH(CH ₃)CH ₂ OH
			Reaction 2
	Compound Z	Reaction 3 ←───	Compound \mathbf{Y} C ₄ H ₆ O ₂
02.1	Give the IUPAC name for CH ₂ (OI	H)CH(CH₃)CH₂Br	[1 mark]
02.2	Reaction 1 occurs via a nucleoph	ilic substitution mech	nanism.
	Explain why the halogenoalkane	is attacked by the nu	icleophile in this reaction. [3 marks]

02.3	The infrared spectrum of Compound Y shows a significant absorption in the range 1680–1750 cm^{-1}	
	Draw the displayed formula of Compound Y. [1 mar	k]
02.4	Compound Z has the empirical formula C_3H_4NO Give the structure of Compound Z .	
	Suggest the reagent for Reaction 3. [2 marks Structure	5]
	Reagent for Reaction 3	

Turn over 🕨

7

Question	Answers	Mark	Additional Comments/Guidance
02.1	<u>3</u> -bromo-(2)-methylpropan- <u>1</u> -ol ONLY	1	3 and 1 are essential, 2 may be omitted, but any other number here is wrong Ignore hyphens and commas
	Bromine is more electronegative than carbon	M1	Allow difference in electronegativity if polarity of bond shown
02.2	C is partially positive / electron deficient	M2	M2 and M3 can be awarded from diagram that shows nucleophilic attack
	Lone/electron pair (on the nucleophile) donated to the partially positive carbon	М3	Allow lone pair attracted to / attacks the partially positive carbon
02.3		1	Must be displayed with all bonds shown

Question	Answers	Mark	Additional Comments/Guidance
02.4	H CH_3 H NC $-C - C - C - CN$ HO H OH KCN & (dil) acid Allow NC $-C - C - C - CN$ HO H OH KCN & (dil) acid Allow NC $-C - CH_2 - CH_2 - CN$ HO H CH2 $-CH_2 - CH_2 - CH$	1	Not need be displayed See General Marking instructions section 3.12 for penalties for incorrectly drawn bonds such as C–HO or C–NC etc. Allow HCN Ignore alcoholic solvents Penalise conc. HCI, H ₂ SO ₄ or any HNO ₃
Total		7	

02.3	The cyclohexene separated in Question 02.2 was obtained as a cloudy liquid. The student dried this cyclohexene by adding a few lumps of anhydrous calcium chloride and allowing the mixture to stand.
	Give one observation that the student made to confirm that the cyclohexene was dry. [1 mark]
02.4	In this preparation, the student added an excess of concentrated phosphoric acid to 14.4 g of cyclohexanol ($M_r = 100.0$). The student obtained 4.15 cm ³ of cyclohexene ($M_r = 82.0$). Density of cyclohexene = 0.810 g cm ⁻³ Calculate the percentage yield of cyclohexene obtained.
	Give your answer to the appropriate number of significant figures. [5 marks]
	% yield
	Question 2 continues on the next page
	Turn over ►
	IB/G/Jun19/7405/2

Question	Answers	Additional Comments/Guidelines	Mark
02.1	Thermometer and bung in flask with bulb level with side arm. Condenser jacket with water in at bottom and out at top.	Must be cross section diagram with no gaps at joints	1 1
02.2	Liquids are immiscible	Allow don't mix, forms two layers (stated or implied) Allow it is insoluble Ignore density or reference to solutions	1
02.3	Liquid goes clear / not cloudy	Ignore colourless	1

	Via moles Amount cyclohexanol (= 14.4/100) = 0.144 mol	Via mass Amount cyclohexanol (= 14.4/100) = 0.144 mol	<i>Via volume</i> Amount cyclohexanol (= 14.4/100) = 0.144 mol	М
	Mass cyclohexene formed = 4.15 x 0.81 = 3.36 g	Mass cyclohexene formed = 4.15 x 0.81 = 3.36 g	Mass of cyclohexene expected (= 0.144 × 82.0 = 11.808 g) OR M1 × 82	M
02.4	amount cyclohexene obtained (= 3.36/82.0 = 0.0410 mol) OR M2/82.0	mass of cyclohexene expected (= 0.144 × 82.0 = 11.808 g) OR = M1 × 82.0	volume of cyclohexene expected (= 11.808/0.810 = 14.577cm ³) OR M2/0.810	M
	%Yield = <u>0.0410</u> x 100 0.144 OR <u>M3</u> x 100 M1	%Yield = <u>3.36</u> x 100 11.808 OR <u>M2</u> x 100 M3	%Yield = $\frac{4.15}{14.577}$ x 100 OR $\frac{4.15}{M3}$ x 100	М
	= 28.5% (must be 3 sf)	= 28.5% (must be 3 sf)	= 28.5% (must be 3 sf)	М
	Only award M5 if ar	nswer is to 3sf and follows some attempt	at % yield calculation in M4	

0 3.3	A second polymer in the mixture has a repeating unit with the structure shown.	Do not write outside the box
	$-CH_2$ CH_2 $-CH_2$	
	The third polymer in the mixture is a stereoisomer of this polymer.	
	Draw the structure of the repeating unit of the third polymer.	
	Give a reason why this type of stereoisomerism arises. [2 marks]	
	Repeating unit	
	Reason	
0 3.4	Golf balls recovered from lakes and ponds can be used again even after being in water for several years.	
	Explain why these golf balls do not biodegrade. [1 mark]	
		9
	Turn over for the next question	

Question	Answers	Additional Comments/Guidelines	Mark
----------	---------	--------------------------------	------

	-CH ₂ H	Must show trailing bonds Ignore brackets and <i>n</i>	1
		Allow skeletal – with brackets	
		\times	
03.3		Must be E 'trans'	
	Mark independently		
	Restricted rotation about the C=C or double bond	Allow lack of rotation/no rotation/limited rotation about the C=C or double bond	1
		Ignore different groups on each carbon of the C=C double bond	
	Carbon Carbon bonds are non polar or (too) strong or not attacked by	Allow carbon chains	
03.4	nucleophiles	OR	1

02.4	nucleophiles	OR	1
03.4	Or	Bonds between repeating units	1
	Carbon Carbon bonds cannot be hydrolysed	Ignore C–H bonds	

0 5	This question is about 2-bromopropane.	Do not write outside the box
0 5.1	Define the term electronegativity.	
	Explain the polarity of the C–Br bond in 2-bromopropane. [3 mark]	ks]
	Electronegativity	
	Explanation	
0 5.2	Outline the mechanism for the reaction of 2-bromopropane with an excess of ammonia.	
	[4 mark	ks]

	Do not write
Draw the skeletal formula of the main organic species formed in the reaction between a large excess of 2-bromopropane and ammonia.	outside the box
Give a use for the organic product. [2 marks]	
Skeletal formula	
Use	9
Turn over for the next question	

0 5.3

Question	Answers	Additional comments/Guidelines	Mark
05.1	 M1 The (relative) tendency of an atom to attract a pair of electrons/ the electrons/ electron density in a covalent bond M2 Br is more electronegative than C (or vice versa) M3 So Br is δ- and C is δ+ 		1 1 1
05.2	$\begin{array}{c} \text{M2 curly arrow} \\ \text{Br, from bond to Br} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	M4 Penalise loss of H ⁺ using Br ⁻ Allow S _n 1	4
05.3	M1	Allow + outside square brackets	1
	M2 Use: (Hair) conditioner / (Cationic) surfactant / disinfectant	Allow fabric softener	1

$\begin{array}{c} \bullet & \bullet & \bullet \\ & \bullet & \bullet \\ & \bullet & \bullet \\ & \bullet & \bullet$	0 6	Polystyrene can be made from benzene in the series of steps shown.	Do n outs
 step 1 CH₃ step 2 CH₃ step 3 CH₂ step 4 Polystyrene 0 6 . 1 State the type of reaction in step 1. Identify the reagent(s) and conditions needed for step 1. Type of reaction			
 Polystyrene 0 6 . 1 State the type of reaction in step 1. Identify the reagent(s) and conditions needed for step 1. [3 marks] Type of reaction		$ \underbrace{\underbrace{\operatorname{step 1}}_{C} \xrightarrow{C}_{CH_3} \underbrace{\operatorname{step 2}}_{CH_3} \xrightarrow{C}_{CH_3} \underbrace{\operatorname{step 3}}_{CH_2} \xrightarrow{C}_{CH_2} $	
0 6.1 State the type of reaction in step 1. Identify the reagent(s) and conditions needed for step 1. [3 marks] Type of reaction		step 4	
Identify the reagent(s) and conditions needed for step 1. [3 marks] Type of reaction [3 marks] Reagent(s)		Polystyrene	
[3 marks] Type of reaction	06.1	State the type of reaction in step 1 .	
Type of reaction			
O 6.2 State the name of the mechanism for the reaction in step 2. Identify the inorganic reagent needed for step 2. Name the organic product of step 2. [3 marks] Name of mechanism Inorganic reagent			
0 6 2 State the name of the mechanism for the reaction in step 2. Identify the inorganic reagent needed for step 2. Name the organic product of step 2. Name the organic product of step 2. [3 marks] Name of mechanism			
Identify the inorganic reagent needed for step 2. Name the organic product of step 2. [3 marks] Name of mechanism Inorganic reagent		Conditions	
Name the organic product of step 2. [3 marks] Name of mechanism Inorganic reagent	06.2	State the name of the mechanism for the reaction in step 2 .	
[3 marks] Name of mechanism Inorganic reagent		Identify the inorganic reagent needed for step 2 .	
Inorganic reagent		•	
Name of organic product			
		Name of organic product	

		Do not write outside the box
0 6 . 3	The organic product of step 2 is reacted with concentrated sulfuric acid in step 3 .	box
	Outline the mechanism for step 3 . [3 marks]	
06.4	Draw the repeating unit of polystyrene.	
	[1 mark]	
		10
	Turn over for the next question	

Question	Answers	Additional comments/Guidelines Mark
06.1	 M1 Acylation M2 CH₃COCl OR Ethanoyl chloride M3 AlCl₃ OR Aluminium chloride (mark could be a 	Allow electrophilic substitution1Allow ethanoic anhydride for1M21M3 dependent on M21Warded in space for M2)Allow Dry/anhydrous for M3Apply list principle to extra incorrect conditions1
06.2	 M1 Nucleophilic addition M2 NaBH₄ M3 1-phenyl ethan(-1-)ol 	Allow LiAIH4 for M21If H2/Ni stated allow M2 and M31but to score a matching M1 it1would have to be Catalytic1addition1

0 3	This question is about 2-methylbut-1-ene.
0 3.1	Name the mechanism for the reaction of 2-methylbut-1-ene with concentrated sulfuric acid.
	Outline the mechanism for this reaction to form the major product. [5 marks]
	Name of mechanism
	Outline of mechanism to form major product
0 3.2	Draw the structure of the minor product formed in the reaction in Question 03.1
	Explain why this is the minor product.
	[3 marks]
	Structure of minor product
	Explanation

IB/M/Jun22/7405/2

03.3	Draw the skeletal formula of a functional group isomer of 2-methylbut-1-ene.	[1 mark]	Do not write outside the box
03.4	2-methylbut-1-ene can form a polymer.		
	State the type of polymerisation.		
	Draw the repeating unit for the polymer formed.	[2 marks]	
	Type of polymerisation		
	Repeating unit		
			11

Question	Answers	Additional Comments/Guidelines	Mark
	Electrophilic addition		M1
	M4 structure	NB Allow fully displayed or other structural formulae	M2
	$H_{C=C} CH_{3} CH_{3}$	if H_2O used as electrophile – max 4 ONLY	М3
	$\begin{array}{c} H \\ M2 \end{array} \begin{array}{c} CH_2CH_3 \\ M2 \end{array} \longrightarrow H_3C - C \\ CH_2CH_3 \end{array} $		M4
	Ή, ,		M5
	мз Ҫо—so₂он́́о́—so₂он́́о́—so₂он́о́		(1 x AO1, 4 x AO2)
03.1	M2 : must show an arrow from = of C=C towards the H atom of the H–O bond or HO that is part of H–O–S– on a compound with molecular formula H_2SO_4 M2 could have arrow to H ⁺ in which case M3 would be for an independent H–O bond break on a compound with formula H_2SO_4		
	M3: must use an arrow to show the breaking of the H–O bond	M3 ignore partial charges unless wrong	
	M4: is for the correct carbocation structure	NOT M4 if primary carbocation shown.	
	M5 : must show an arrow from a lone pair of electrons on the correct oxygen of the negatively charged ion towards the positively charged carbon atom	M5 NOT HSO ₄ credit as shown or as :OSO ₃ H – in which case negative charge can be shown anywhere	
	NB: The arrows are double-headed	ECF from H ₂ SO ₃ in M2	
		IGNORE subsequent use of water to hydrolyse hydrogensulfate	

Question	Answers	Additional Comments/Guidelines	Mark
03.2	$ \begin{array}{c} CH_{3} \\ H_{2}C - C - CH_{2}CH_{3} \\ 0 \\ H \\ SO_{2}OH \end{array} $	If tertiary shown here allow as ECF for M1 if primary shown in 03.1	M1
	(major) product formed via more stable <u>carbocation</u> OR tertiary <u>carbocation</u> more stable (than primary)	Must be clear refers to intermediate and not product	M2
	Due to electron-releasing character / (positive) inductive effect of three alkyl groups (as opposed to one)	Primary has one e⁻ donating alkyl group	M3 (3 x AO2)

Question	Answers	Additional Comments/Guidelines	Mark
03.3	Skeletal formula of cycloalkane	ignore structure of 2-methylbut-1-ene	1 (AO1)

Question	Answers	Additional Comments/Guidelines	Mark
	Addition (polymerisation)	Not additional	M1
	$ \begin{array}{c c} H & CH_3 \\ & & \\ -C - C - \end{array} $	Penalise incorrect attachment of ethyl group	
03.4		Must have trailing bonds	M2 (1 x AO1,
	│ │ H CH₂CH₃	Ignore n and brackets	1 x AO2)
		Ignore structure of 2-methylbut-1-ene	

0 5		nis question is about the preparation of hexan-2-ol. exan-2-ol does not mix with water and has a boiling point of 140 °C
	He	exan-2-ol can be prepared from hex-1-ene using this method.
	а	Measure out 11.0 cm ³ of hex-1-ene into a boiling tube in an ice bath.
	b	Carefully add 5 cm ³ of concentrated phosphoric acid to the hex-1-ene.
	С	After 5 minutes add 10 cm ³ of distilled water to the mixture and transfer the boiling tube contents to a separating funnel.
	d	Shake the mixture and allow it to settle.
	е	Discard the lower (aqueous) layer.
	f	Add a fresh 10 cm ³ sample of distilled water and repeat steps d and e .
	g	Transfer the remaining liquid to a beaker.
	h	Add 2 g of anhydrous magnesium sulfate and allow to stand for 5 minutes.
	i	Filter the mixture under reduced pressure.
	j	Distil the filtrate and collect the distillate that boils in the range 130–160 $^{\circ}$ C
0 5.1		s important to wear eye protection and a lab coat when completing this experiment. uggest, with a reason, one other appropriate safety precaution for this experiment.
		[2 marks]
	Pr	ecaution
	Re	eason
0 5.2	Gi	ve a reason for adding the distilled water in steps c and f . [1 mark]
0 5.3	Gi	ve a reason for adding anhydrous magnesium sulfate in step h . [1 mark]
		Question 5 continues on the next page

1 5

Turn over ►

0 5.4	Complete and label the diagram of the apparatus used to filter the mixture under reduced pressure in step i .	Do not write outside the box
	[2 marks]	
	To vacuum pump	
0 5.5	Identify the most likely organic impurity, other than hex-1-ene, in the distillate collected in step j . Suggest one reason why it could be difficult to remove this impurity. [2 marks]	
	Impurity	
	Reason	

Turn over ►

12

Do not write outside the box

Question	Answers	Additional Comments/Guidelines	Mark
	Wear gloves Conc phosphoric acid is corrosive OR	Allow wash spillages with lots of water	1
05.1	Use a fume cupboard Volatile organic compounds are harmful / toxic OR	Allow work in a well-ventilated lab space	(2 x AO3)
	Keep away from naked flames Organic compounds are flammable OR Periodically release pressure inside separating funnel Prevent build-up of pressure	Other valid suggestions eg heating mantle or electric heater Not water bath	

Question	Answers	Additional Comments/Guidelines	Mark
05.2	To remove (water) soluble impurities	Allow to remove (excess) acid	1 (AO2)

Question	Answers	Additional Comments/Guidelines	Mark
05.3	To remove water / absorb water / dry the liquid	Allow drying agent	1 (AO2)

Question	Answers	Additional Comments/Guidelines	Mark
05.4	To vacuum pump	 Deduct a mark(s) for error(s) / omission(s) Minimum Cross sectional (ie funnel top and end shown open) Bung or collar drawn (Buchner) Funnel – approximate shape WITH label Filter paper – WITH label 	2 (2 x AO2)

Question	Answers	Additional Comments/Guidelines	Mark
05.5	Impurity: hexan-1-ol Reason: It is likely to have a similar boiling point	If hexan-3-ol allow ecf for M2	M1 M2 (2 x AO2)

Question	Answers	Additional Comments/Guidelines	Mark
	Mass hex-1-ene = 11.0 × 0.678 (or = 7.46 g)	Allow consequential marks for M2,M3,M4	M1
	n hex-1-ene = $\frac{7.46}{84.0}$ (or = 0.0888)		M2
05.6	Mass of product = $0.0888 \times 0.31 \times 102$		M3
	Mass product = 2.8 g	Allow answers 2.8 or 2.9 only	M4 (4 x AO2)

		Do not w
0 3	Under suitable conditions, 2-bromobutane reacts with sodium hydroxide to produce a mixture of five products, A , B , C , D and E .	outside a box
	Products A , B and C are alkenes.	
	A is a structural isomer of B and C .	
	A does not exhibit stereoisomerism.	
	B and C are a pair of stereoisomers.	
	Products D and E are alcohols.	
	D and E are a pair of enantiomers.	
0 3.1	Give the names of the two concurrent mechanisms responsible for the formation of the alkenes and the alcohols.	
	[2 marks]	
	Mechanism to form alkenes	
	Mechanism to form alcohols	
0 3.2	Define the term stereoisomers.	
	[2 marks]	
03.3	Deduce the name of isomer A .	
	Explain why A does not exhibit stereoisomerism. [2 marks]	
	Name	
	Explanation	

0 3.4	Outline the mechanism for the reaction of 2-bromobutane with sodium hydroxide to	Do not write outside the box
	form alkene A. [3 marks]
0 3 . 5	Deduce the name of isomer B and the name of isomer C .	
	Explain the origin of the stereoisomerism in B and C . [2 marks]
	Names	_
		_
	Explanation	_
		_
		_
0 3 6	Draw 3D representations of enantiomers D and E to show how their structures are related.	
	[2 marks]
	Question 3 continues on the next page	

IB/M/Jun22/7405/3

		Do not write
0 3.7	A student compares the rates of hydrolysis of 1-chlorobutane, 1-bromobutane and 1-iodobutane.	outside the box
	The suggested method is:	
	 add equal volumes of the three halogenoalkanes to separate test tubes add equal volumes of aqueous silver nitrate to each test tube record the time taken for a precipitate to appear in each test tube. 	
	State and explain the order in which precipitates appear. [2 marks	s]
	Order in which precipitates appear	
		_
	Explanation	_
		_
		15

Question	Answers	Additional Comments/Guidelines	Mark
03.1	(for alkenes) elimination (for alcohols) nucleophilic substitution	Allow base elimination Not nucleophilic elimination	1 1 (2 x AO1)

Question	Answers	Additional Comments/Guidelines	Mark
03.2	(Different molecules/compounds with the) same (molecular and) structural formula		1
03.2	Different spatial arrangement of atoms	Allow different spatial arrangement of bonds/groups	1 (2 x AO1)

Question	Answers	Additional Comments/Guidelines	Mark
	A = but-1-ene	Not butene	1
03.3	two groups/atoms/Hs the same on one of the C=C carbons	Allow two groups/atoms/Hs the same on first C Not two groups the same on one <u>side</u> of C=C Ignore references to no chiral carbon Ignore 'priority' i.e. 2 groups with the same priority gets M2 for '2 groups the same'	1 (1 x AO1, 1 x AO3)

Question	Answers	Additional Comments/Guidelines	Mark
	$H_{3}CCH_{2} - C - H$ $M_{3} - Br - H$ M_{1} M_{1}	If wrong halogenoalkane used then max 2/3 M1 lone pair on O, negative charge (anywhere) and curly arrow from lone pair to H on carbon 1 Not if (covalent) NaOH / additional arrows to or from NaOH / additional arrows to or from Na ⁺	1
	HÖ	 M2 curly arrow from C(1)–H to C(1)–C(2) M2 is standalone from M1 Allow ecf if H on carbon 3 attacked in M1 for curly arrow from C(3)-H to C(2)–C(3) Not as ecf if H on carbon 2 attacked in M1 for curly arrow from C(2)-H 	1
03.4		M3 Curly arrow from C–Br to Br (mark is independent) Not if any additional arrows / incorrect polarity or formal charges on C–Br	1 (3 x AO2)
		Allow ecf for mechanism to form but-2-ene from 03.3	
		 Allow E1 mechanism M1 curly arrow from C–Br bond to the Br M2 curly arrow from lone pair on O of OH⁻ to a correct H on the correct C adjacent to C+ on the carbocation M3 curly arrow from a correct C–H bond to a correct C–C bond penalise M1 for any additional arrow(s) to/from the Br to/from anything else penalise M2 for any additional arrow(s) on NaOH 	

Question	Answers	Additional Comments/Guidelines	Mark
03.5	Z-but-2-ene AND <i>E</i> -but-2-ene lack of/restricted/no (free) rotation around C=C/double bond	allow 'cis'/'trans' and B and C either way round Allow <i>E</i> / <i>Z</i> but-2-ene, cis/trans but-2-ene Allow C=C/double bond cannot rotate	1 1 (1 x AO1, 1 x AO3)

Question	Answers	Additional Comments/Guidelines	Mark
	ОН ОН	M1 any correct 2D or 3D structure of butan-2-ol Allow C_2H_5	1
03.6	H_3CH_2C H_3 H_3C H_3C H_3C $H_3CH_2CH_3$	M2 must show at least one wedge bond and one dash bond in each structure from the chiral C and any bonds in the plane cannot be at 180° to each other	1 (1 x AO2, 1 x AO3)
		second structure could be drawn as mirror image of first or with same orientation of bonds and two groups swapped round Allow ECF for second structure from incorrect first structure, providing molecule is chiral	

Question	Answers	Additional Comments/Guidelines	Mark
03.7	Silver iodide then silver bromide then silver chloride bond strength C–I < C–Br < C–CI	Allow yellow then cream then white Allow iodide/AgI then bromide/AgBr then chloride/AgCI Allow iodo(butane) then bromo(butane) then chloro(butane) Ignore iodine then bromine then chlorine Ignore incorrect formulae Allow carbon-halogen bond strength decreases down the group / from CI to I	1 1 (2 x AO3)