A' Level Chemistry
 Year 1

Unit 5: Halogenoalkanes \& Alkenes

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

Answer all questions in the spaces provided

0	1

Figure 1 shows some compounds made from a halogenoalkane.
Figure 1

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	Draw the displayed formula of compound \mathbf{J}.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Name the mechanism for Reaction $\mathbf{2}$ and give an essential condition used to |
| :--- | :--- | :--- | :--- | ensure that $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ is the major product.

Name of mechanism

Condition \qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ Calculate the mass, in grams, of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ p produced from 25.2 g of |
| :--- | :--- | :--- | :--- | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ in Reaction 2 assuming a 75.0% yield.

Give your answer to the appropriate number of significant figures.

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{4}$ When Reaction $\mathbf{2}$ is carried out under different conditions, a compound with |
| :--- | :--- | :--- | :--- | molecular formula $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{~N}$ is produced.

Draw the skeletal formula of the compound.
Identify the functional group in the compound including its classification.
[2 marks]
Skeletal formula

Functional group including classification \qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5}$	Identify the reagent and conditions used in Reaction 3.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{6}$ Name and outline a mechanism for Reaction 3. |
| :--- | :--- | :--- | :--- |

Name of mechanism
Mechanism

Question	Answers	Mark	Additional Comments/Guidance
01.1		1	Must be displayed

01.2	$\underline{\text { Nucleophilic substitution }}$	1	
	$\underline{\text { Excess } \mathrm{NH}_{3}}$	1	Ignore aqueous, alcoholic, conc, dil, temp, heat, pressure

01.3	Amount of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$	25.2/122.9 (=0.205) (mol)	M1	If either Mr incorrect or used incorrectly then only award 1 mark for 75% yield calculation (ignore rounding to 123 for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$)
	Amount of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	$\mathrm{M} 1 \times 0.75(=0.154)(\mathrm{mol})$	M2	OR Max mass amine $=$ M1 $\times 59.0(=12.1)(\mathrm{g})$ Actual mass $=\mathrm{M} 2 \times 0.75=\underline{9.07 \mathrm{~g}}$ Must be 3sf
	Mass $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	$\mathrm{M} 2 \times 59.0=9.07 \mathrm{~g}$ Must be 3sf	M3	Allow 9.09 but if 9.08 check for AE 18.9 scores 1 for 75%

01.4 Mast be skeletal

Question	Answers	Mark	Additional Comments/Guidance

$\mathbf{0 1 . 5}$	$\mathrm{NaOH} /$ ethanol or $\mathrm{KOH} /$ ethanol (both required)	1	Not aqueous Ignore heat, temp, conc., dil, Accept alcoholic for ethanol

\begin{tabular}{|c|c|c|c|}
\hline 01.6 \& \begin{tabular}{l}
(Basic) Elimination \\
M1 arrow from lone pair on O of hydroxide to correct H (or to space mid way between hydroxide O and H) \\
M2 arrow from C-H bond to C-C bond following attack by \(\mathrm{OH}^{-}\) on the correct H \\
M3 arrow from C - Br bond to Br \\
If nucleophilic substitution shown then allow M3 only in mechanism \\
If wrong haloalkane used then Max 2 for mechanism
\end{tabular} \& 1

3 \& | Also credit E1 mechanism |
| :--- |
| M3 curly arrow for loss of Br^{-}\& structure of carbocation M1 arrow from lone pair on O of hydroxide to H (or to space mid way between hydroxide O and H) (same as E2) M2 arrow from C-H bond to C-C bond (same as E2) |

\hline
\end{tabular}

[^0]| $\mathbf{0}$ | $\mathbf{2}$ Halogenoalkanes are useful compounds in synthesis. A reaction pathway is shown. |
| :--- | :--- |

$\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$	$\stackrel{\text { Reaction 1 }}{\longrightarrow}$	$\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$
		\downarrowReac Compound \mathbf{Z}
	Reaction 3	Compound \mathbf{Y} $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$

| $\mathbf{0}$ | $\mathbf{2} \cdot \mathbf{1}$ Give the IUPAC name for $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$ |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{2} .2$
$\mathbf{2}$	Reaction 1 occurs via a nucleophilic substitution mechanism.

Explain why the halogenoalkane is attacked by the nucleophile in this reaction.
\qquad

Draw the displayed formula of Compound \mathbf{Y}.

| $\mathbf{0}$ | $\mathbf{2} .4$ Compound \mathbf{Z} has the empirical formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NO}$ |
| :--- | :--- | :--- |

Give the structure of Compound \mathbf{Z}.
Suggest the reagent for Reaction 3.

Structure

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/2 - JUNE 2018
Question
Answers
Mark Additional Comments/Guidance

02.1	3-bromo-(2)-methylpropan-1-ol ONLY	1	3 and 1 are essential, 2 may be omitted, but any other number here is wrong lgnore hyphens and commas
02.2	Bromine is more electronegative than carbon		
C is partially positive / electron deficient			
Lone/electron pair (on the nucleophile) donated to the partially positive carbon	M1	Allow difference in electronegativity if polarity of bond shown M2 and M3 can be awarded from diagram that shows nucleophilic attack Allow lone pair attracted to / attacks the partially positive carbon	
02.3	1	Must be displayed with all bonds shown	

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/2 - JUNE 2018

| Total | 7 |
| :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{2}$ | A student prepared cyclohexene by heating cyclohexanol with concentrated |
| :--- | :--- | :--- | phosphoric acid. The cyclohexene produced was distilled off from the reaction mixture.

| $\mathbf{0}$ | $\mathbf{2}$ | . $\mathbf{1}$ Complete the diagram of the apparatus used to distil the cyclohexene from the |
| :--- | :--- | :--- | reaction mixture at $83^{\circ} \mathrm{C}$.

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{2}$ The distillate was shaken with saturated sodium chloride solution. The cyclohexene |
| :--- | :--- | :--- | was separated from the aqueous solution using a separating funnel.

State why cyclohexene can be separated from the aqueous solution using the separating funnel.
\qquad
\qquad

The student dried this cyclohexene by adding a few lumps of anhydrous calcium chloride and allowing the mixture to stand.

Give one observation that the student made to confirm that the cyclohexene was dry.
\qquad
\qquad

| 0 | 2 | 4 | In this preparation, the student added an excess of concentrated phosphoric acid to |
| :--- | :--- | :--- | :--- | 14.4 g of cyclohexanol ($M_{\mathrm{r}}=100.0$).

The student obtained $4.15 \mathrm{~cm}^{3}$ of cyclohexene ($M_{\mathrm{r}}=82.0$).
Density of cyclohexene $=0.810 \mathrm{~g} \mathrm{~cm}^{-3}$
Calculate the percentage yield of cyclohexene obtained.
Give your answer to the appropriate number of significant figures.
\qquad

| 0 | 2 | $\mathbf{5}$ Cyclohexene reacts with bromine. |
| :--- | :--- | :--- | :--- |

Complete the mechanism for this reaction.

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/2 - JUNE 2019
\square

02.1	Thermometer and bung in flask with bulb level with side arm. Condenser jacket with water in at bottom and out at top.	Must be cross section diagram with no gaps at joints	1

| 02.2 | Liquids are immiscible | Allow don't mix, forms two layers (stated or implied)
 Allow it is insoluble
 Ignore density or reference to solutions |
| :---: | :--- | :--- | :--- |
| 02.3 | Liquid goes clear / not cloudy | Ignore colourless |

Via moles Amount cyclohexanol (= 14.4/100) $=0.144 \mathrm{~mol}$	Via mass Amount cyclohexanol (= 14.4/100) $=0.144 \mathrm{~mol}$	Via volume Amount cyclohexanol (= 14.4/100) $=0.144 \mathrm{~mol}$	M1
Mass cyclohexene formed $=4.15 \times 0.81=3.36 \mathrm{~g}$	Mass cyclohexene formed $=4.15 \times 0.81=3.36 \mathrm{~g}$	Mass of cyclohexene expected $(=0.144 \times 82.0=11.808 \mathrm{~g})$ OR M1 $\times 82$	M2
amount cyclohexene obtained $\begin{aligned} & (=3.36 / 82.0=0.0410 \mathrm{~mol}) \\ & \text { OR M2/82.0 } \end{aligned}$	mass of cyclohexene expected $\begin{aligned} & (=0.144 \times 82.0=11.808 \mathrm{~g}) \\ & O R=M 1 \times 82.0 \end{aligned}$	volume of cyclohexene expected $\begin{aligned} & \left(=11.808 / 0.810=14.577 \mathrm{~cm}^{3}\right) \\ & \text { OR M2/0.810 } \end{aligned}$	M3
$\begin{array}{r} \text { \%Yield }=\frac{0.0410}{0.144} \times 100 \\ \text { OR } \frac{\mathrm{M} 3}{\mathrm{M} 1} \times 100 \end{array}$	$\begin{aligned} & \% \text { Yield }=\frac{3.36}{11.808} \times 100 \\ & \text { OR } \frac{M 2}{M 3} \times 100 \end{aligned}$	$\begin{aligned} & \text { \%Yield }=\frac{4.15}{14.577} \times 100 \\ & \text { OR } \frac{4.15}{M 3} \times 100 \end{aligned}$	M4
$=28.5 \% \text { (must be } 3 \mathrm{sf})$ Only award M5	$=28.5 \% \text { (must be } 3 \mathrm{sf})$ er is to 3sf and follows some attem	$=28.5 \%$ (must be 3 sf) \% yield calculation in M4	M5

Lose M 1 if
Full charges on $\mathrm{Br}-\mathrm{Br}$
OR
Wrong partial charges on $\mathrm{Br}-\mathrm{Br}$
OR
Arrow is to Br^{+}ion (formed in a preliminary
step)

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{2}$ The insides of some golf balls are made from a mixture of three other polymers. ${ }^{2}$. ${ }^{2}$. |
| :--- | :--- | :--- | The repeating unit for one of these polymers is shown.

Draw the skeletal formula of the monomer used to make this polymer.
Give the IUPAC name of the monomer.

Skeletal formula of monomer

IUPAC name

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ A second polymer in the mixture has a repeating unit with the structure shown. |
| :--- | :--- | :--- | :--- |

The third polymer in the mixture is a stereoisomer of this polymer.
Draw the structure of the repeating unit of the third polymer.
Give a reason why this type of stereoisomerism arises.

Repeating unit

Reason \qquad
\qquad
\qquad

0	3	4
4	$G o l f ~ b a l l s ~ r e c o v e r e d ~ f r o m ~ l a k e s ~ a n d ~ p o n d s ~ c a n ~ b e ~ u s e d ~ a g a i n ~ e v e n ~ a f t e r ~ b e i n g ~ i n ~$	

Explain why these golf balls do not biodegrade.
\qquad
\qquad

Question	Answers	Additional Comments/Guidelines	Mark

| 03.2 | Buta-1,3-diene | Must be skeletal | |
| :--- | :--- | :--- | :--- | :---: |

03.3	Must show trailing bonds Ignore brackets and n		
Mark independently	Must be E 'trans' Restricted rotation about the $\mathrm{C}=\mathrm{C}$ or double bond	Allow lack of rotation/no rotation/limited rotation about the $\mathrm{C}=\mathrm{C}$ or double bond Ignore different groups on each carbon of the $\mathrm{C}=\mathrm{C}$ double bond	1

03.4	Carbon Carbon bonds are non polar or (too) strong or not attacked by nucleophiles Or Carbon Carbon bonds cannot be hydrolysed	Allow carbon chains OR Bonds between repeating units	1

0	5	This question is about 2-bromopropane.	
0	5	Define the term electronegativity.	
		Explain the polarity of the $\mathrm{C}-\mathrm{Br}$ bond in 2-bromopropane.	[3 marks]
		Electronegativity	

\qquad
Explanation
\qquad
\qquad

| 0 | 5 | 2 |
| :--- | :--- | :--- | excess of ammonia.

| $\mathbf{0}$ | $\mathbf{5} .3$ Draw the skeletal formula of the main organic species formed in the reaction between |
| :--- | :--- | :--- | :--- | a large excess of 2-bromopropane and ammonia.

Give a use for the organic product.

Skeletal formula

Use

Turn over for the next question

Question	Answers	Additional comments/Guidelines	Mark
05.1	M1 The (relative) tendency of an atom to attract a pair of electrons/ the electrons/ electron density in a covalent bond M2 Br is more electronegative than C (or vice versa) M3 $\quad \mathrm{So} \mathrm{Br}$ is δ - and C is $\delta+$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
05.2		M4 Penalise loss of H^{+}using Br^{-} Allow $\mathrm{S}_{\mathrm{n}} 1$	4
05.3	M1 Use: (Hair) conditioner / (Cationic) surfactant / disinfectant	Allow + outside square brackets Allow fabric softener	1 1

| $\mathbf{0}$ | $\mathbf{6}$ Polystyrene can be made from benzene in the series of steps shown. |
| :--- | :--- | :--- |

0	6	1

Identify the reagent(s) and conditions needed for step 1.

Type of reaction \qquad
Reagent(s) \qquad
Conditions \qquad

| $\mathbf{0}$ | $\mathbf{6} .2$ | $\mathbf{2}$ State the name of the mechanism for the reaction in step 2. |
| :--- | :--- | :--- | :--- |

Identify the inorganic reagent needed for step 2.
Name the organic product of step 2.

Name of mechanism \qquad
Inorganic reagent \qquad
Name of organic product \qquad

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{3}$ The organic product of step $\mathbf{2}$ is reacted with concentrated sulfuric acid in step $\mathbf{3}$. |
| :--- | :--- | :--- | :--- | Outline the mechanism for step 3.

0	6	4
4	Draw the repeating unit of polystyrene.	

Question	Answers	Additional comments/Guidelines	Mark
06.1	M1 Acylation M2 $\quad \mathrm{CH}_{3} \mathrm{COCl}$ OR Ethanoyl chloride M3 AlCl_{3} OR Aluminium chloride (mark could be awarded in space for M2)	Allow electrophilic substitution Allow ethanoic anhydride for M2 M3 dependent on M2 Allow Dry/anhydrous for M3 Apply list principle to extra incorrect conditions	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
06.2	M1 Nucleophilic addition M2 $\quad \mathrm{NaBH}_{4}$ M3 1-phenyl ethan(-1-)ol	Allow LiAlH_{4} for M2 If $\mathrm{H}_{2} / \mathrm{Ni}$ stated allow M2 and M3 but to score a matching M1 it would have to be Catalytic addition	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

06.3	M1 curly arrow from lone pair to H^{+} M3 two curly arrows to show loss of water and of H^{+}	Penalise M1 for mistakes on structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$ Allow H^{+}attacked in $\mathbf{M 1}$ Allow M3 as two steps Allow displayed formulae	3
06.4		Must show trailing bonds Ignore brackets and any use of n Allow $\mathrm{C}_{6} \mathrm{H}_{5}$ for phenyl group	1

0	3	This question is about 2-methylbut-1-ene.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{1}$ | Name the mechanism for the reaction of 2-methylbut-1-ene with |
| :--- | :--- | :--- | :--- | concentrated sulfuric acid.

Outline the mechanism for this reaction to form the major product.

Name of mechanism
Outline of mechanism to form major product

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ Draw the structure of the minor product formed in the reaction in Question 03.1

Explain why this is the minor product.

Structure of minor product

Explanation

\qquad
\qquad
\qquad
\qquad

epeating unit

Question	Answers	Additional Comments/Guidelines	Mark
03.1	Electrophilic addition M5 M2: must show an arrow from $=$ of $\mathrm{C}=\mathrm{C}$ towards the H atom of the $\mathrm{H}-\mathrm{O}$ bond or HO that is part of $\mathrm{H}-\mathrm{O}-\mathrm{S}-\ldots$ on a compound with molecular formula $\mathrm{H}_{2} \mathrm{SO}_{4}$ M2 could have arrow to H^{+}in which case M3 would be for an independent $\mathrm{H}-\mathrm{O}$ bond break on a compound with formula $\mathrm{H}_{2} \mathrm{SO}_{4}$ M3: must use an arrow to show the breaking of the $\mathrm{H}-\mathrm{O}$ bond M4: is for the correct carbocation structure M5: must show an arrow from a lone pair of electrons on the correct oxygen of the negatively charged ion towards the positively charged carbon atom NB: The arrows are double-headed	NB Allow fully displayed or other structural formulae if $\mathrm{H}_{2} \mathrm{O}$ used as electrophile - max 4 ONLY M3 ignore partial charges unless wrong NOT M4 if primary carbocation shown. M5 NOT HSO 4 credit as shown or as : $\mathrm{OSO}_{3} \mathrm{H}$ - in which case negative charge can be shown anywhere ECF from $\mathrm{H}_{2} \mathrm{SO}_{3}$ in M2 IGNORE subsequent use of water to hydrolyse hydrogensulfate	M1M2M3M4M5$(1 \times \mathrm{AO} 1$, $4 \times \mathrm{AO} 2)$

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/2 - JUNE 2022

Question	Answers	Additional Comments/Guidelines	Mark
03.2	 (major) product formed via more stable carbocation OR tertiary carbocation more stable (than primary) Due to electron-releasing character / (positive) inductive effect of three alkyl groups (as opposed to one)	If tertiary shown here allow as ECF for M1 if primary shown in 03.1	M1
		Must be clear refers to intermediate and not product Primary has one e^{-}donating alkyl group	$\begin{gathered} \text { M2 } \\ \text { M3 } \\ (3 \times \mathrm{AO} 2) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark	
	Skeletal formula of cycloalkane			
03.3				

Question	Answers	Additional Comments/Guidelines	Mark
03.4	Addition (polymerisation)	Not additional Penalise incorrect attachment of ethyl group Must have trailing bonds Ignore n and brackets Ignore structure of 2-methylbut-1-ene	M1 $\begin{gathered} \mathrm{M} 2 \\ (1 \times \mathrm{AO} 1, \\ 1 \times \mathrm{AO} 2) \end{gathered}$

| 0 | 5 |
| :--- | :--- | This question is about the preparation of hexan-2-ol.

Hexan-2-ol does not mix with water and has a boiling point of $140^{\circ} \mathrm{C}$
Hexan-2-ol can be prepared from hex-1-ene using this method.
a Measure out $11.0 \mathrm{~cm}^{3}$ of hex-1-ene into a boiling tube in an ice bath.
b Carefully add $5 \mathrm{~cm}^{3}$ of concentrated phosphoric acid to the hex-1-ene.
C After 5 minutes add $10 \mathrm{~cm}^{3}$ of distilled water to the mixture and transfer the boiling tube contents to a separating funnel.
d Shake the mixture and allow it to settle.
e Discard the lower (aqueous) layer.
f Add a fresh $10 \mathrm{~cm}^{3}$ sample of distilled water and repeat steps \mathbf{d} and \mathbf{e}.
g Transfer the remaining liquid to a beaker.
h Add 2 g of anhydrous magnesium sulfate and allow to stand for 5 minutes.
i Filter the mixture under reduced pressure.
j Distil the filtrate and collect the distillate that boils in the range $130-160^{\circ} \mathrm{C}$

| $\mathbf{0}$ | $\mathbf{5} .1$ | $\mathbf{1}$ | It is important to wear eye protection and a lab coat when completing this experiment. |
| :--- | :--- | :--- | :--- | Suggest, with a reason, one other appropriate safety precaution for this experiment. [2 marks]

Precaution \qquad
Reason \qquad
\qquad

0	5	2	Give a reason for adding the distilled water in steps \mathbf{c} and \mathbf{f}.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$.	3	Give a reason for adding anhydrous magnesium sulfate in step \mathbf{h}.

\qquad
\qquad

Question 5 continues on the next page

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{4}$ Complete and label the diagram of the apparatus used to filter the mixture under |
| :--- | :--- | :--- | :--- | reduced pressure in step \mathbf{i}.

| 0 | 5 | 5 |
| :--- | :--- | :--- | in step \mathbf{j}.

Suggest one reason why it could be difficult to remove this impurity.

Impurity \qquad
Reason
\qquad

| $\mathbf{0}$ | $\mathbf{5} .6$ Calculate the mass, in g , of hexan-2-ol formed from $11.0 \mathrm{~cm}^{3}$ of hex-1-ene if the |
| :--- | :--- | :--- | yield is 31.0%

Give your answer to 1 decimal place.
Density of hex-1-ene $=0.678 \mathrm{~g} \mathrm{~cm}^{-3}$

Do not write outside the box

Question	Answers	Additional Comments/Guidelines	Mark
05.1	Wear gloves Conc phosphoric acid is corrosive OR Use a fume cupboard Volatile organic compounds are harmful / toxic OR Keep away from naked flames Organic compounds are flammable OR Periodically release pressure inside separating funnel Prevent build-up of pressure	Allow wash spillages with lots of water Allow work in a well-ventilated lab space Other valid suggestions eg heating mantle or electric heater Not water bath	$\begin{gathered} 1 \\ 1 \\ (2 \times \mathrm{AO} 3) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
05.2	To remove (water) soluble impurities	Allow to remove (excess) acid	$\begin{gathered} 1 \\ (\mathrm{AO} 2) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
05.3	To remove water / absorb water / dry the liquid	Allow drying agent	$\begin{gathered} 1 \\ (\mathrm{AO} 2) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
05.4		Deduct a mark(s) for error(s) / omission(s) Minimum - Cross sectional (ie funnel top and end shown open) - Bung or collar drawn - (Buchner) Funnel - approximate shape WITH label - Filter paper - WITH label	$\begin{gathered} 2 \\ (2 \times \mathrm{AO} 2) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
05.5	Impurity: hexan-1-ol Reason: It is likely to have a similar boiling point	If hexan-3-ol allow ecf for M2	$\begin{gathered} \text { M1 } \\ \text { M2 } \\ (2 \times \mathrm{AO} 2) \end{gathered}$

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/2 - JUNE 2022

Question	Answers	Additional Comments/Guidelines	Mark
05.6	Mass hex-1-ene $=11.0 \times 0.678($ or $=7.46 \mathrm{~g})$	Allow consequential marks for M2,M3,M4	M1
	n hex-1-ene $=\frac{7.46}{84.0}(\mathrm{or}=0.0888)$		M2
	Mass of product $=0.0888 \times 0.31 \times 102$		M3
	Mass product $=2.8 \mathrm{~g}$	Allow answers 2.8 or 2.9 only	M4
$(4 \times$ AO2 $)$			

| $\mathbf{0}$ | $\mathbf{3}$ Under suitable conditions, 2-bromobutane reacts with sodium hydroxide to produce a |
| :--- | :--- | :--- | mixture of five products, A, B, C, D and E.

Products A, B and C are alkenes.
\mathbf{A} is a structural isomer of \mathbf{B} and \mathbf{C}.
A does not exhibit stereoisomerism.
B and C are a pair of stereoisomers.
Products D and E are alcohols.
D and \mathbf{E} are a pair of enantiomers.

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{1}$ Give the names of the two concurrent mechanisms responsible for the formation of |
| :--- | :--- | :--- | the alkenes and the alcohols.

Mechanism to form alkenes
Mechanism to form alcohols \qquad

$\mathbf{0}$	$\mathbf{3} .2$	Define the term stereoisomers.

\qquad
\qquad
\qquad

0	3	3

Explain why A does not exhibit stereoisomerism.

Name \qquad
Explanation \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3} .4$ | $\begin{array}{l}\text { Outline the mechanism for the reaction of 2-bromobutane with sodium hydroxide to } \\ \text { form alkene } \mathbf{A} \text {. }\end{array}$ |
| :--- | :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{5}$ Deduce the name of isomer \mathbf{B} and the name of isomer \mathbf{C}.

Explain the origin of the stereoisomerism in \mathbf{B} and \mathbf{C}.

Names \qquad
\qquad
Explanation \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{6}$ Draw 3D representations of enantiomers \mathbf{D} and \mathbf{E} to show how their structures are |
| :--- | :--- | :--- | :--- | related.

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{7}$ | A student compares the rates of hydrolysis of 1-chlorobutane, 1-bromobutane and |
| :--- | :--- | :--- | :--- | 1-iodobutane.

The suggested method is:

- add equal volumes of the three halogenoalkanes to separate test tubes
- add equal volumes of aqueous silver nitrate to each test tube
- record the time taken for a precipitate to appear in each test tube.

State and explain the order in which precipitates appear.

Order in which precipitates appear \qquad
Order in which preciptates appear \qquad
\qquad
\qquad
Explanation \qquad
\qquad
\qquad
\qquad

Question	Answers	Additional Comments/Guidelines	Mark
03.1	(for alkenes) elimination (for alcohols) nucleophilic substitution	Allow base elimination Not nucleophilic elimination	$\begin{gathered} 1 \\ 1 \\ (2 \times \mathrm{AO} 1) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
03.2	(Different molecules/compounds with the) same (molecular and) structural formula Different spatial arrangement of atoms	Allow different spatial arrangement of bonds/groups	$\begin{gathered} 1 \\ (2 \times \mathrm{AO} 1) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
03.3	$\mathbf{A}=\text { but-1-ene }$ two groups/atoms/Hs the same on one of the $\mathrm{C}=\mathrm{C}$ carbons	Not butene Allow two groups/atoms/Hs the same on first C Not two groups the same on one side of $\mathrm{C}=\mathrm{C}$ Ignore references to no chiral carbon Ignore 'priority' i.e. 2 groups with the same priority... gets M2 for ' 2 groups the same...'	$\begin{gathered} 1 \\ 1 \\ \\ (1 \times \mathrm{AO} 1, \\ 1 \times \mathrm{AO} 3) \end{gathered}$

| Question | Additional Comments/Guidelines | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- |

MARK SCHEME - A-LEVEL CHEMISTRY - 7405/3 - JUNE 2022

	MARK SCHEME - A-LEVEL CHEMISTRY - 7405/3- JUNE 2022		
Question	Answers	Additional Comments/Guidelines	Mark
03.5	Z-but-2-ene AND E-but-2-ene lack of/restricted/no (free) rotation around $\mathrm{C}=\mathrm{C} /$ double bond	allow 'cis'/'trans' and \mathbf{B} and \mathbf{C} either way round Allow E/Z but-2-ene, cis/trans but-2-ene Allow $\mathrm{C}=\mathrm{C} /$ double bond cannot rotate	$\begin{gathered} 1 \\ 1 \\ (1 \times \mathrm{AO} 1, \\ 1 \times \mathrm{AO} 3) \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
03.6		M1 any correct 2D or 3D structure of butan-2-ol Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ M2 must show at least one wedge bond and one dash bond in each structure from the chiral C and any bonds in the plane cannot be at 180° to each other second structure could be drawn as mirror image of first or with same orientation of bonds and two groups swapped round Allow ECF for second structure from incorrect first structure, providing molecule is chiral	$\begin{gathered} 1 \\ 1 \\ (1 \times \mathrm{AO} 2, \\ 1 \times \mathrm{AO} 3) \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
	Silver iodide then silver bromide then silver chloride	Allow yellow then cream then white Allow iodide/Agl then bromide/AgBr then chloride/AgCl Allow iodo(butane) then bromo(butane) then chloro(butane) Ignore idine then bromine then chlorine lgnore incorrect formulae Allow carbon-halogen bond strength decreases down the group / from Cl to I	(2 x AO3)

[^0]: Total

