A' Level Chemistry
 Year 1

Unit 7: Group II \& Group VII

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

$\mathbf{0}$	$\mathbf{8}$	This question is about ion testing.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ Describe how a student could distinguish between aqueous solutions of |
| :--- | :--- | :--- | potassium nitrate, KNO_{3}, and potassium sulfate, $\mathrm{K}_{2} \mathrm{SO}_{4}$, using one simple test-tube reaction.

Reagent \qquad
Observation with $\mathrm{KNO}_{3}(\mathrm{aq})$ \qquad
\qquad
Observation with $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
\qquad

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{2}$ Describe how a student could distinguish between aqueous solutions of |
| :--- | :--- | :--- | magnesium chloride, MgCl_{2}, and aluminium chloride, AlCl_{3}, using one simple test-tube reaction.

Reagent \qquad
Observation with $\mathrm{MgCl}_{2}(\mathrm{aq})$ \qquad
\qquad
Observation with $\mathrm{AlCl}_{3}(\mathrm{aq})$ \qquad

Question	Answers	Mark	Additional Comments/Guidance
08.1	$\mathrm{BaCl}_{2} / \mathrm{Ba}(\mathrm{OH})_{2} / \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} / \mathrm{BaX}_{2}$ or names colourless solution / no (visible) change (nvc) / no ppt / no (visible) reaction white precipitate / white solid	1 1 1	Ignore acidification but CE $=0 / 3$ if $\mathrm{H}_{2} \mathrm{SO}_{4}$ If reagent incorrect or blank then $\mathrm{CE}=0 / 3$ If Ba^{2+} or wrong formula, lose M1 and mark on Ignore nothing happens and no observation
08.2	NaOH / sodium hydroxide / other Group 1 hydroxides white precipitate / white solid (white) ppt which dissolves in excess (NaOH) Alternative Method Name or formula of Group 1 carbonate white precipitate / white solid (white) precipitate and effervescence	1 1 1 1 1 1	If reagent incorrect or blank then $\mathrm{CE}=0 / 3$ If reagent incomplete, lose M1 and mark on If reagent is excess NaOH , allow colourless solution for M 3
Total		6	

0	$\mathbf{4} \quad$ This question is about s-block metals.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$ Give the full electron configuration for the calcium ion, Ca^{2+}

| $\mathbf{0}$ | $\mathbf{4} .2$ | Explain why the second ionisation energy of calcium is lower than the second |
| :--- | :--- | :--- | ionisation energy of potassium.

[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{4}$ | $\mathbf{3}$ Identify the s-block metal that has the highest first ionisation energy. |
| :--- | :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{4} .4$ Give the formula of the hydroxide of the element in Group 2, from Mg to Ba , that is l |
| :--- | :--- | :--- | least soluble in water.

\qquad

Question 4 continues on the next page

 $0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium sulfate solution. The student filtered off the precipitate and collected the filtrate.

Give an ionic equation for the formation of the precipitate.
Show by calculation which reagent is in excess.
Calculate the total volume of the other reagent which should be used by the student so that the filtrate contains only one solute.

Ionic equation \qquad

Reagent in excess
Total volume of other reagent \qquad
\qquad
\qquad
\qquad
\qquad

	Reactant(s) adsorbed onto the (platinum surface) / (platinum) provides a surface / active sites Reaction (on the surface) or bond breaking(weakening) / bond making occurs (on the surface) Desorption (of the product) or wtte		1
03.4	$(O x i d a t i o n ~ s t a t e ~ c h a n g e s ~ f r o m) ~$	-3 to +2 OR	$(+) 5$
03.6	$2 \mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+3 \mathrm{H}_{2} \mathrm{O}$	Allow multiples lgnore state symbols	1
Total			1

Question	Answers	Additional Comments/Guidance	Mark
04.1	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\left(4 s^{0}\right)$		1
04.2	$\mathrm{M} 1 \mathrm{In} \mathrm{Ca}{ }^{(+)}$(outer) electron(s) is further from nucleus Or $\mathrm{Ca}^{(+)}$loses electron from a higher (energy) orbital Or $\mathrm{Ca}^{(+)}$loses electron from a 4 (s) orbital or $4^{\text {th }}$ energy level or $4^{\text {th }}$ energy shell and $\mathrm{K}^{(+)}$loses electron from a $3(\mathrm{p})$ orbital or $3^{\text {rd }}$ energy level or $3^{\text {rd }}$ energy shell M2 More shielding (in Ca^{+})	Must be comparative Allow converse arguments	1
04.3	Be/Beryllium		1
04.4	$\mathrm{Mg}(\mathrm{OH})_{2}$		1
04.5	$\begin{aligned} & \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4} \\ & \mathrm{n} \mathrm{BaCl}(6 / 1000 \times 0.25)=1.5 \times 10^{-3} \text { and } \mathrm{n} \mathrm{Na}_{2} \mathrm{SO}_{4}=(8 / 1000 \times 0.15) \\ & =1.2 \times 10^{-3} \\ & \text { and } \mathrm{BaCl}_{2} / \text { barium chloride in excess } \\ & \left.10 \mathrm{~cm}^{3} \text { (of } 0.15 \mathrm{~mol} \mathrm{dm}^{-3} \text { sodium sulfate }\right) \end{aligned}$	Ignore state symbols Working required or 3×10^{-4} of BaCl_{2} or $0.01 \mathrm{dm}^{3}$	1 1 1

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{1}$ Solid sodium chloride reacts with concentrated sulfuric acid. |
| :--- | :--- | :--- | :--- |

Give an equation for this reaction.
State the role of the sulfuric acid in this reaction.

Equation
\qquad
Role

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{2}$ Fumes of sulfur dioxide are formed when sodium bromide reacts with |
| :--- | :--- | :--- | :--- | concentrated sulfuric acid.

For this reaction

- give an equation
- give one other observation
- state the role of the sulfuric acid.

Equation
\qquad
Observation \qquad
\qquad
Role

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{3}$	Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.

$$
3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NaClO}_{3}+5 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O}
$$

Give the oxidation state of chlorine in NaClO_{3} and in NaCl
NaClO_{3}
NaCl
\qquad
\qquad

0	5	.4

$\begin{array}{llll}0 & 5 & 5 & \text { Solution } \mathbf{Y} \text { contains two different negative ions. }\end{array}$
To a sample of solution \mathbf{Y} in a test tube a student adds

- silver nitrate solution
- then an excess of dilute nitric acid
- finally an excess of concentrated ammonia solution.

The observations after each addition are recorded in Table 3.

Table 3

Reagent added to solution \mathbf{Y}	Observation
silver nitrate solution	cream precipitate containing compound \mathbf{D} and compound \mathbf{E}
excess dilute nitric acid	cream precipitate \mathbf{D} and bubbles of gas \mathbf{F}
excess concentrated ammonia solution	colourless solution containing complex ion \mathbf{G}

Give the formulas of \mathbf{D}, \mathbf{E} and \mathbf{F}.
Give an ionic equation to show the formation of \mathbf{E}.
Give an equation to show the conversion of \mathbf{D} into \mathbf{G}.

Formula of \mathbf{D}
Formula of E
Formula of F
Ionic equation to form \mathbf{E}

Equation to show the conversion of \mathbf{D} into \mathbf{G}

Question	Answers	Additional Comments/Guidelines	Mark
05.1	$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl}$ Proton donor	Allow $2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$ Allow (Bronsted-Lowry) acid	
05.2	$\begin{aligned} & 2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Or} \\ & 2 \mathrm{NaBr}+3 \mathrm{H}_{2} \mathrm{SO}_{4}-2 \mathrm{NaHSO}_{4}+\mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Or} \\ & 2 \mathrm{H}^{+}+2 \mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Or} \\ & 4 \mathrm{H}^{+}+2 \mathrm{Br}^{-}+\mathrm{SO}_{4}^{2^{-}} \rightarrow \mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ brown gas or brown fumes or orange gas or orange fumes Oxidising agent	Ignore $2 \mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr}$ Ignore $\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HBr}$ Do not accept yellow solid Ignore fizzing and misty fumes Allow electron acceptor Ignore acid / proton donor	1 1
05.3	(+)5 and -1		1
05.4	Is oxidised and reduced	Allow undergoes disproportionation Allows gains and loses electrons	1
05.5	$\begin{aligned} & \text { D AgBr } \\ & \mathrm{E} \mathrm{Ag} \mathrm{CO}_{3} \\ & \mathrm{~F} \mathrm{CO} \\ & 2 \mathrm{Ag}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3} \\ & \mathrm{AgBr}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}+\mathrm{Br} \end{aligned}$	Ignore state symbols $\mathrm{Or} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}$ One mark for $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$and 1 mark for equation If $\mathrm{D}=\mathrm{AgCl}$, then allow 2 marks for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}+\mathrm{Cl}^{-}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$

| $\mathbf{0}$ | $\mathbf{9} \quad$ This question is about sodium halides. |
| :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{1}$ State what is observed when silver nitrate solution is added to sodium fluoride |
| :--- | :--- | :--- | :--- | solution.

| $\mathbf{0}$ | $\mathbf{9}$. | $\mathbf{2}$ State one observation when solid sodium chloride reacts with concentrated |
| :--- | :--- | :--- | sulfuric acid.

Give an equation for the reaction.
State the role of the chloride ions in the reaction.

Observation \qquad
Equation
\qquad
Role \qquad

| $\mathbf{0}$ | $\mathbf{9} .3$ Give an equation for the redox reaction between solid sodium bromide and |
| :--- | :--- | :--- | concentrated sulfuric acid.

Explain, using oxidation states, why this is a redox reaction.

Equation
\qquad
Explanation \qquad
\qquad
\qquad
\qquad
 Give an ionic equation for the reaction.

Observation \qquad
Ionic equation

Question	Answers	Additional comments/Guidelines	Mark
09.1	Colourless (solution)	Allow no (visible) change, no reaction or no ppt (formed) Ignore none or nothing	1
09.2	M1 Misty or steamy or white fumes/gas $\begin{array}{r} \mathrm{M} 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl} \quad \text { OR } \\ 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl} \end{array}$ M3 Base OR proton acceptor	Accept multiples	1 1 1
09.3	M1 $2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ OR $2 \mathrm{Br}^{-}+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Br changes oxidation state from - 1 to 0 and is oxidised S changes oxidation state from +6 to +4 and is reduced	M1 Allow ionic equations $\begin{aligned} & 2 \mathrm{Br}^{-}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{4}^{2-}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{OR} \\ & 2 \mathrm{Br}^{-}+4 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	1 1 1
09.4	M1 Yellow or orange solution $\mathrm{M} 2 \mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}$	M1 Do not accept brown solution M2 Accept multiples	

0	6	This question is about some elements in Group 7 and their compounds.

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{1}$ Chlorine is added to some drinking water supplies to decrease the risk of people |
| :--- | :--- | :--- | :--- | suffering from diseases such as cholera.

State why the amount of chlorine added must be controlled.
\qquad
\qquad

| 0 | 6 | 2 |
| :--- | :--- | :--- | two acids.

Explain, with reference to electrons, why this is a redox reaction.

Equation
\qquad
Explanation \qquad
\qquad
\qquad
\qquad

0	6	3	A student bubbles chlorine gas through a solution of sodium iodide.

State the observation the student would make.
Give an ionic equation for the reaction.

Observation \qquad
Ionic equation
\qquad

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{4}$ The student adds a few drops of concentrated sulfuric acid to a small amount of |
| :--- | :--- | :--- | :--- | solid sodium iodide.

Two gaseous sulfur-containing products are formed.
Give an equation for the formation of each of these sulfur-containing products.
State the role of sulfuric acid in the formation of these products.

Equation 1

Equation 2

Role

| 0 | 6 | $\mathbf{5}$ | The student adds a few drops of acidified silver nitrate solution to a solution of an |
| :--- | :--- | :--- | :--- | unknown impure sodium halide.

The student observes bubbles of gas and a colourless solution.
The student bubbles the gas through calcium hydroxide solution and a white precipitate forms.

Deduce the identity of the sodium halide.
Suggest the identity of the gas.
Give an ionic equation for the formation of this gas from the impurity.

Identity of sodium halide \qquad
Identity of gas \qquad
Ionic equation

$\mathbf{0}$	$\mathbf{6}$.6
\mathbf{T}		

Use your understanding of the electron pair repulsion theory to draw the shape of this ion.

Include any lone pairs of electrons that influence the shape.
Explain why the ion has the shape you have drawn.
Suggest a value for the bond angle in the ion.

Shape

Explanation \qquad
\qquad
\qquad
Bond angle

| 0 | 6 | .7 |
| :--- | :--- | :--- | Magnesium is used in the extraction of titanium from titanium(IV) chloride.

Give an equation for this reaction.
Explan

[3

Question	Answers	Additional Comments/Guidelines	Mark
06.1	toxic/poisonous/too much chlorine causes death		$\begin{gathered} 1 \\ \text { AO1 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
06.2	$\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCl}+\mathrm{HClO}$ chlorine/ $\mathrm{Cl}^{2} / \mathrm{Cl}_{2}$ gains electron(s) (to form Cl^{-}) and loses electron(s) (to form ClO^{-})	allow $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{ClO}^{-}$ ignore chlorine is oxidised and reduced ignore disproportionation ignore oxidation numbers unless incorrect	$\begin{gathered} 1 \\ 1 \\ \text { AO1 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
06.3	brown solution or black solid (forms) $\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}$	do not accept purple allow multiples ignore state symbols	$\begin{gathered} 1 \\ 1 \\ \text { AO1 } \\ \text { AO2 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
06.4	$\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \\ & \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{H}^{+}+8 \mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2} \end{aligned}$ oxidising agent	equations can be in either order allow $\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$ allow $\mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+}+8 \mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}$ allow alternative correct balanced equations starting from Nal to form SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ eg $2 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaI} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$ $3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$ $5 \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{NaI} \rightarrow 4 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}$ $9 \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{NaI} \rightarrow 8 \mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}$	$\begin{gathered} 1 \\ 1 \\ 1 \\ \text { AO1 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
06.5	NaF or sodium fluoride		1
	CO_{2} or carbon dioxide		1
	$\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	allow multiples	1
			AO1
			AO3

Question	Answers	Additional Comments/Guidelines	Mark

06.6		allow shape with 2 lp and 2 bp	1
	Ione pair-lone pair repulsion > bond pair-bond pair repulsion or Ione pair repel to be as far apart as possible	allow lp-lp repulsion > bp-bp repulsion	1
	104 to $106\left({ }^{\circ}\right)$	allow 95 to 106(${ }^{\circ}$)	1 AO1 AO2 AO3

Question	Answers	Additional Comments/Guidelines	Mark
06.7	$\mathrm{TiCl}_{4}+2 \mathrm{Mg} \rightarrow 2 \mathrm{MgCl}_{2}+\mathrm{Ti}$	allow multiples ignore state symbols	1

0	$\mathbf{4}$	This question is about Group 7 chemistry.

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{1}$ Give an equation for the reaction of solid sodium bromide with |
| :--- | :--- | :--- | concentrated sulfuric acid to form bromine.

State one observation made during this reaction.
Equation
\qquad
Observation \qquad
\qquad
\qquad

| 0 | 4 | 2 |
| :--- | :--- | :--- | A solution that is thought to contain chloride ions and iodide ions is tested.

1. Dilute nitric acid is added to the solution.
2. Aqueous silver nitrate is added to the solution.
3. A pale yellow precipitate forms.
4. Excess dilute aqueous ammonia is added to the mixture.
5. Some of the precipitate dissolves and a darker yellow precipitate remains.

Give a reason for the use of each reagent.
Explain the observations.
Give ionic equations for any reactions.
\qquad

Turn over for the next question

Question	Answers	Additional comments/Guidelines	Mark
4.1	M1 $2 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaBr} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	allow ionic and equation forming NaHSO_{4} $3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $2 \mathrm{H}^{+}+2 \mathrm{Br}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ not equation from Hr unless formation of HBr shown in separate equation	1
	M2 orange/brown fumes/solution	not liquid / yellow solid / bad eggs smell / white ppt ignore choking gas/fumes / steamy/white fumes	1

Question	Answers	Additional comments/Guidelines	Mark
4.2	HNO_{3} removes (hydroxide/carbonate) ions that may give other ppts with AgNO_{3} AgNO_{3} produces ppts with chloride/iodide/halide $\begin{aligned} & \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s}) \mathrm{OR} \\ & \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{Agl}(\mathrm{~s}) \end{aligned}$ NH_{3} dissolves AgCl (leaving yellow AgI) $\mathrm{AgCl}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	not chlorine/iodine/halogen allow $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgX}(\mathrm{s})$ state symbols not required but not if wrong allow chloride/iodide salt/ppt allow with $\mathrm{Ag}^{+}(\mathrm{aq})$	1 1 1 1 1

