A' Level Chemistry Year 1

Unit 7: Group II & Group VII

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Online Forms Take Time to Answer

Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

0 8 0 8 . 1	This question is about ion testing. Describe how a student could distinguish between aqueous solutions of potassium nitrate, KNO ₃ , and potassium sulfate, K ₂ SO ₄ , using one simple test-tube reaction. [3 marks]
	Reagent
	Observation with KNO ₃ (aq)
	Observation with K ₂ SO ₄ (aq)
08.2	Describe how a student could distinguish between aqueous solutions of magnesium chloride, MgCl ₂ , and aluminium chloride, AlCl ₃ , using one simple test-tube reaction. [3 marks]
	Reagent
	Observation with MgCl ₂ (aq)
	Observation with AlCl ₃ (aq)

6

Question	Answers	Mark	Additional Comments/Guidance
	BaCl ₂ / Ba(OH) ₂ / Ba(NO ₃) ₂ / BaX ₂ or names	1	Ignore acidification but CE = $0/3$ if H ₂ SO ₄ If reagent incorrect or blank then CE = $0/3$ If Ba ²⁺ or wrong formula, lose M1 and mark on
08.1	colourless solution / no (visible) change (nvc) / no ppt / no (visible) reaction	1	Ignore nothing happens and no observation
	white precipitate / white solid	1	
	NaOH / sodium hydroxide / other Group 1 hydroxides	1	If reagent incorrect or blank then CE =0/3 If reagent incomplete, lose M1 and mark on
	white precipitate / white solid	1	
	(white) ppt which dissolves in <u>excess</u> (NaOH)	1	If reagent is excess NaOH, allow colourless solution for M3
08.2	Alternative Method		
	Name or formula of Group 1 carbonate	1	
	white precipitate / white solid	1	
	(white) precipitate and effervescence	1	

		-
Total	6	

04	This question is about s-block metals.
04.1	Give the full electron configuration for the calcium ion, Ca ²⁺ [1 mark]
04.2	Explain why the second ionisation energy of calcium is lower than the second ionisation energy of potassium. [2 marks]
04.3	Identify the s-block metal that has the highest first ionisation energy. [1 mark]
04.4	Give the formula of the hydroxide of the element in Group 2, from Mg to Ba, that is least soluble in water. [1 mark]
	Question 4 continues on the next page

Turn over ►

04.5	A student added 6 cm ³ of 0.25 mol dm ^{-3} barium chloride solution to 8 cm ³ of 0.15 mol dm ^{-3} sodium sulfate solution. The student filtered off the precipitate and collected the filtrate.
	Give an ionic equation for the formation of the precipitate. Show by calculation which reagent is in excess. Calculate the total volume of the other reagent which should be used by the student
	so that the filtrate contains only one solute. [3 marks]
	Ionic equation
	Reagent in excess
	Total volume of other reagent

	Reactant(s) adsorbed onto the (platinum surface) / (platinum) provides a surface / active sites		1
03.4	Reaction (on the surface) or bond breaking(weakening) / bond making occurs (on the surface)		1
	Desorption (of the product) or wtte		1
03.5	(Oxidation state changes from) -3 to +2 OR (+) 5		1
03.6	$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O$	Allow multiples Ignore state symbols	1

Total			11
-------	--	--	----

Question	Answers	Additional Comments/Guidance	Mark
04.1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ (4s ⁰)		1
	M1 In Ca ⁽⁺⁾ (outer) electron(s) is furth <u>er</u> from nucleus	Must be comparative	1
	Or Ca ⁽⁺⁾ loses electron from a high <u>er</u> (energy) orbital	Allow converse arguments	
04.2	Or $Ca^{(+)}$ loses electron from a 4(s) orbital or 4 th energy level or 4 th energy shell and K ⁽⁺⁾ loses electron from a 3(p) orbital or 3 rd energy level or 3 rd energy shell		
	M2 More shielding (in Ca ⁺)		1
04.3	Be /Beryllium		1
04.4	Mg(OH) ₂		1
	$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$	Ignore state symbols	1
04.5	n BaCl ₂ (6/1000 x 0.25) = 1.5×10^{-3} and n Na ₂ SO ₄ = (8/1000 x 0.15) = 1.2×10^{-3} and BaCl ₂ /barium chloride in excess	Working required or 3×10^{-4} of BaCl ₂	1
	10 cm^3 (of 0.15 mol dm ⁻³ sodium sulfate)	or <u>0.01dm³</u>	1

 This question is about some Group 7 compounds. Solid sodium chloride reacts with concentrated sulfuric acid. Give an equation for this reaction. State the role of the sulfuric acid in this reaction. Equation Role Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid. For this reaction give an equation give one other observation 	2 marks]
Give an equation for this reaction. State the role of the sulfuric acid in this reaction. Equation Role Similar Solution Role Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid. For this reaction • give an equation	2 marks]
State the role of the sulfuric acid in this reaction. Equation Role State the role of the sulfuric acid in this reaction. For this reaction o give an equation For this reaction o give an equation Equation State the role of the sulfuric acid in this reaction. For this reaction o give an equation For this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction. For this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in this reaction Calculate the role of the sulfuric acid in th	2 marks]
Role 0 5.2 Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid. For this reaction • give an equation	
 0 5. 2 Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid. For this reaction give an equation 	
 concentrated sulfuric acid. For this reaction give an equation 	
give an equation	
 state the role of the sulfuric acid. 	3 marks]
Equation	
Observation	
Role	
0 5 . 3 Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.	
$3Cl_2 + 6NaOH \rightarrow NaClO_3 + 5NaCl + 3H_2O$	
Give the oxidation state of chlorine in NaClO $_3$ and in NaCl	[1 mark]
NaClO ₃	

) 5.	4 State, in terms of redox, what happe	ens to chlorine in the reaction in Question 05.3 . [1 mark]	Do r outs
5.	 5 Solution Y contains two different ne To a sample of solution Y in a test to silver nitrate solution then an excess of dilute nitric acid finally an excess of concentrated The observations after each addition 	ube a student adds d ammonia solution.	
Γ_	Tabl	e 3	
F	Reagent added to solution Y	Observation	
s	ilver nitrate solution	cream precipitate containing compound D and compound E	
e	excess dilute nitric acid	cream precipitate D and bubbles of gas F	
e	excess concentrated ammonia solution	colourless solution containing complex ion ${f G}$	
	Give the formulas of D, E and F . Give an ionic equation to show the Give an equation to show the conve		
	Formula of D		
	Formula of E		
	Formula of F		
	lonic equation to form E		
	Equation to show the conversion of	D into G	

Question	Answers	Additional Comments/Guidelines	Mark
05.4	$NaCI + H_2SO_4 \rightarrow NaHSO_4 + HCI$	Allow 2NaCI + $H_2SO_4 \rightarrow Na_2SO_4 + 2HCI$	1
05.1	Proton donor	Allow (Bronsted-Lowry) acid	1
05.2	$\begin{array}{l} 2NaBr + 2H_2SO_4 \rightarrow Na_2SO_4 + SO_2 + Br_2 + 2H_2O \\ Or \\ 2NaBr + 3H_2SO_4 \rightarrow 2NaHSO_4 + SO_2 + Br_2 + 2H_2O \\ Or \\ 2H^+ + 2Br^- + H_2SO_4 \rightarrow SO_2 + Br_2 + 2H_2O \\ Or \\ 4H^+ + 2Br^- + SO_4^{2^-} \rightarrow SO_2 + Br_2 + 2H_2O \\ brown gas or brown fumes or orange gas or orange fumes \\ Oxidising agent \end{array}$	Ignore 2NaBr + $H_2SO_4 \rightarrow Na_2SO_4 + 2HBr$ Ignore NaBr + $H_2SO_4 \rightarrow NaHSO_4 + HBr$ Do not accept yellow solid Ignore fizzing and misty fumes Allow electron acceptor Ignore acid / proton donor	1
05.3	(+)5 and -1		1
05.4	Is oxidised and reduced	Allow undergoes disproportionation Allows gains <u>and</u> loses electrons	1

	D AgBr E Ag ₂ CO ₃ F CO ₂ $2Ag^{+} + CO_{3}^{2^{-}} \rightarrow Ag_{2}CO_{3}$	Ignore state symbols	1 1 1
05.5	$AgBr + 2NH_3 → Ag(NH_3)_2^+ + Br^-$	Or → Ag(NH ₃) ₂ Br One mark for Ag(NH ₃) ₂ ⁺ and 1 mark for equation If D = AgCl, then allow 2 marks for AgCl + 2NH ₃ → Ag(NH ₃) ₂ ⁺ + Cl ⁻	1 2

		Do not write
09	This question is about sodium halides.	outside the box
09.1	State what is observed when silver nitrate solution is added to sodium fluoride solution.	
	[1 mai	r k]
		—
09.2	State one observation when solid sodium chloride reacts with concentrated sulfuric acid.	
	Give an equation for the reaction.	
	State the role of the chloride ions in the reaction.	
	[3 mark	(s]
	Observation	
	Equation	
	Dela	—
	Role	
09.3	Give an equation for the redox reaction between solid sodium bromide and concentrated sulfuric acid.	
	Explain, using oxidation states, why this is a redox reaction.	
	[3 mark	(s]
	Equation	
	Explanation	
		_
		—
09.4	State what is observed when aqueous chlorine is added to sodium bromide solution.	
	Give an ionic equation for the reaction.	
	[2 mark	(s]
	Observation	
	Ionic equation	
		9

Question	Answers	Additional comments/Guidelines	Mark
09.1	Colourless (solution)	Allow no (visible) change, no reaction or no ppt (formed)	1
		Ignore none or nothing	
	M1 Misty or steamy or white fumes/gas		1
09.2	$\begin{array}{rll} \text{M2 NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{NaHSO}_4 + \text{HCl} & \text{OR} \\ \\ \text{2NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{HCl} \end{array}$	Accept multiples	1
	M3 Base OR proton acceptor		1
	M1 2NaBr + 2H ₂ SO ₄ \rightarrow Na ₂ SO ₄ + Br ₂ + SO ₂ + 2 H ₂ O OR 2Br ⁻ + 2H ⁺ + H ₂ SO ₄ \rightarrow SO ₂ + Br ₂ + 2H ₂ O	M1 Allow ionic equations $2Br^{-} + 2H_2SO_4 \rightarrow Br_2 + SO_4^{2-} + SO_2 + 2H_2O$ OR	1
09.3	2DI + 2II + H23O4 + 3O2 + DI2 + 2H2O	$2Br^{-} + 4H^{+} + SO_4^{2} \rightarrow Br_2 + SO_2 + 2H_2O$	
00.0	Br changes oxidation state from - <u>1 to 0</u> and is <u>oxidised</u>		1
	S changes oxidation state from ± 6 to ± 4 and is reduced		1
	M1 Yellow or orange solution	M1 Do not accept brown solution	1
09.4	M2 $Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$	M2 Accept multiples	1

06	This question is about some elements in Group 7 and their compounds.
06.1	Chlorine is added to some drinking water supplies to decrease the risk of people suffering from diseases such as cholera.
	State why the amount of chlorine added must be controlled. [1 mark]
06.2	Give an equation for the reaction of chlorine with water to form a solution containing two acids.
	Explain, with reference to electrons, why this is a redox reaction. [2 marks]
	Equation
	Explanation
06.3	A student bubbles chlorine gas through a solution of sodium iodide.
	State the observation the student would make.
	Give an ionic equation for the reaction. [2 marks]
	Observation
	Ionic equation

Do not write outside the box

0 6.4	The student adds a few drops of concentrated sulfuric acid to a small amount of
	solid sodium iodide.
	Two gaseous sulfur-containing products are formed.
	Give an equation for the formation of each of these sulfur-containing products.
	State the role of sulfuric acid in the formation of these products. [3 marks]
	Equation 1
	Equation 2
	Role
0 6.5	The student adds a few drops of acidified silver nitrate solution to a solution of an unknown impure sodium halide. The student observes bubbles of gas and a colourless solution. The student bubbles the gas through calcium hydroxide solution and a white precipitate forms.
	Deduce the identity of the sodium halide.
	Suggest the identity of the gas.
	Give an ionic equation for the formation of this gas from the impurity. [3 marks]
	Identity of sodium halide
	Identity of gas
	Ionic equation
	Question 6 continues on the next next
	Question 6 continues on the next page

Turn over ►

			Do not writ
06.6	The $ClF_{2^{+}}$ ion contains two different Group 7 elements.		outside the box
	Use your understanding of the electron pair repulsion theory to draw the sha this ion.	ape of	
	Include any lone pairs of electrons that influence the shape.		
	Explain why the ion has the shape you have drawn.		
	Suggest a value for the bond angle in the ion.	[3 marks]	
	Shape		
	For long the se		
	Explanation		
	Bond angle		
0 6.7	Magnesium is used in the extraction of titanium from titanium(IV) chloride.		
	Give an equation for this reaction.	[4	
		[1 mark]	
			15

Question	Answers	Additional Comments/Guidelines	Mark
06.1	toxic/poisonous/too much chlorine causes death		1 AO1

Question	Answers	Additional Comments/Guidelines	Mark
06.2	$Cl_2 + H_2O \rightarrow HCl + HClO$ chlorine/Cl/Cl ₂ gains electron(s) (to form Cl ⁻) and loses electron(s) (to form ClO ⁻)	allow $Cl_2 + H_2O \rightarrow 2H^+ + Cl^- + ClO^-$ ignore chlorine is oxidised and reduced ignore disproportionation ignore oxidation numbers unless incorrect	1 1 AO1

Question	Answers	Additional Comments/Guidelines	Mark
06.3	brown solution or black solid (forms) $Cl_2 + 2l^- \rightarrow 2Cl^- + l_2$	do not accept purple allow multiples ignore state symbols	1 1 AO1 AO2

Question	Answers	Additional Comments/Guidelines	Mark
06.4	$\begin{array}{l} H_2SO_4+2H^++2I^-\rightarrow SO_2+2H_2O+I_2\\ H_2SO_4+8H^++8I^-\rightarrow H_2S+4H_2O+4I_2\\ \mbox{oxidising agent} \end{array}$	equations can be in either order allow $SO_4^{2-} + 4H^+ + 2I^- \rightarrow SO_2 + 2H_2O + I_2$ allow $SO_4^{2-} + 10H^+ + 8I^- \rightarrow H_2S + 4H_2O + 4I_2$ allow alternative correct balanced equations starting from Nal to form SO_2 and H_2S eg $2H_2SO_4 + 2NaI \rightarrow Na_2SO_4 + SO_2 + 2H_2O + I_2$ $3H_2SO_4 + 2NaI \rightarrow 2NaHSO_4 + SO_2 + 2H_2O + I_2$ $5H_2SO_4 + 8NaI \rightarrow 4Na_2SO_4 + H_2S + 4H_2O + 4I_2$ $9H_2SO_4 + 8NaI \rightarrow 8NaHSO_4 + H_2S + 4H_2O + 4I_2$	1 1 1 AO1

Question	Answers	Additional Comments/Guidelines	Mark
06.5	NaF or sodium fluoride CO_2 or carbon dioxide $CO_3^{2-} + 2H^+ \rightarrow CO_2 + H_2O$	allow multiples	1 1 1 AO1 AO3

Question	Answers	Additional Comments/Guidelines	Mark
	FF	allow shape with 2 lp and 2 bp ignore absence of charge	1
06.6	lone pair–lone pair repulsion > bond pair–bond pair repulsion or lone pair repel to be as far apart as possible	allow lp–lp repulsion > bp–bp repulsion	1
	104 to 106(°)	allow 95 to 106(°)	1 AO1 AO2 AO3

Question	Answers	Additional Comments/Guidelines	Mark
06.7	$TiCl_4 + 2Mg \rightarrow 2MgCl_2 + Ti$	allow multiples ignore state symbols	1 AO2

0 4	This question is about Group 7 chemistry.		Do not write outside the box
04.1	Give an equation for the reaction of solid sodium bromide with concentrated sulfuric acid to form bromine.		
	State one observation made during this reaction.		
	Equation [2	? marks]	
	Observation		
04.2	A solution that is thought to contain chloride ions and iodide ions is tested.		
	1. Dilute nitric acid is added to the solution.		
	2. Aqueous silver nitrate is added to the solution.		
	3. A pale yellow precipitate forms.4. Excess dilute aqueous ammonia is added to the mixture.		
	5. Some of the precipitate dissolves and a darker yellow precipitate remains.		
	Give a reason for the use of each reagent.		
	Explain the observations.		
	Give ionic equations for any reactions.		
	[5	i marks]	

13

Question	Answers	Additional comments/Guidelines	Mark
4.1	M1 $2H_2SO_4 + 2NaBr \rightarrow Na_2SO_4 + SO_2 + Br_2 + 2H_2O$	allow ionic and equation forming NaHSO ₄ $3H_2SO_4 + 2NaBr \rightarrow 2NaHSO_4 + SO_2 + Br_2 + 2H_2O$ $2H^+ + 2Br^- + H_2SO_4 \rightarrow SO_2 + Br_2 + 2H_2O$ not equation from HBr unless formation of HBr shown in separate equation	1
	M2 orange/brown fumes/solution	not liquid / yellow solid / bad eggs smell / white ppt ignore choking gas/fumes / steamy/white fumes	1

Question	Answers	Additional comments/Guidelines	Mark
4.2	HNO_3 removes (hydroxide/carbonate) ions that may give other ppts with $AgNO_3$		1
	AgNO ₃ produces ppts with chloride/iodide/halide	not chlorine/iodine/halogen	1
	Ag ⁺ (aq) + Cl ⁻ (aq) → AgCl(s) OR Ag ⁺ (aq) + l ⁻ (aq) → AgI(s)	allow Ag⁺(aq) + X⁻(aq) → AgX(s) state symbols not required but not if wrong	1
	NH_3 dissolves AgCl (leaving yellow AgI)	allow chloride/iodide salt/ppt	1
	AgCl(s) + 2NH ₃ (aq) → Ag(NH ₃) ₂ +(aq) + Cl ⁻ (aq)	allow with Ag⁺(aq)	1