A' Level Chemistry
 Year 1

Unit 1: Time of Flight

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Use the 3 Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

The Periodic Table of the Elements

* 58-71 Lanthanides
† 90-103 Actinides

$\begin{gathered} 140.1 \\ \mathbf{C e} \\ \text { cerium } \\ 58 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 140.9 \\ \mathbf{P r} \\ \text { praseodymium } \\ 59 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 144.2 \\ \text { Nd } \\ \text { neodymium } \\ 60 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline[145] \\ \text { Pm } \\ \text { promethium } \\ 61 \\ \hline \end{array}$	$\begin{gathered} 150.4 \\ \mathrm{Sm} \\ \text { samarium } \\ 62 \\ \hline \end{gathered}$	$\begin{gathered} 152.0 \\ \text { Eu } \\ \text { europium } \\ 63 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 157.3 \\ \text { Gd } \\ \text { gadolinium } \\ 64 \\ \hline \end{array}$	$\begin{gathered} 158.9 \\ \mathrm{~Tb} \\ \text { terbium } \\ 65 \\ \hline \end{gathered}$	$\begin{gathered} 162.5 \\ \text { Dy } \\ \text { dysprosium } \\ 66 \\ \hline \end{gathered}$	164.9 Ho holmium 67	$\begin{gathered} 167.3 \\ \text { Er } \\ \text { erbium } \\ 68 \\ \hline \end{gathered}$	$\begin{gathered} 168.9 \\ \mathrm{Tm} \\ \text { thulium } \\ 69 \\ \hline \end{gathered}$	$\begin{gathered} 173.0 \\ \text { Yb } \\ \text { ytterbium } \\ 70 \\ \hline \end{gathered}$	175.0 Lu lutetium 71
$\begin{gathered} 232.0 \\ \text { Th } \\ \text { thorium } \\ 90 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 231.0 \\ \mathrm{~Pa} \\ \text { protactinium } \\ 91 \end{array}$	$\begin{gathered} 238.0 \\ \text { uranium } \\ 92 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 237] \\ \mathbf{N p} \\ \text { neptunium } \\ 93 \end{array}$	[244] Pu plutonium 94	[243] Am americium 95	$\begin{gathered} {[247]} \\ \mathbf{C m} \\ \text { curium } \\ 96 \end{gathered}$	[247] Bk berkelium 97	$\begin{gathered} {[251]} \\ \mathbf{C f} \\ \text { californium } \\ 98 \\ \hline \end{gathered}$	$\begin{array}{\|c} {[252]} \\ \text { Es } \\ \text { einsteinium } \\ 99 \\ \hline \end{array}$	$\begin{gathered} {[257]} \\ \text { Fm } \\ \text { fermium } \\ 100 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} {[258]} \\ \mathbf{M d} \\ \text { mendelevium } \\ 101 \end{array}$	$\begin{gathered} {[259]} \\ \text { No } \\ \text { nobelium } \\ 102 \\ \hline \end{gathered}$	$\begin{gathered} {[262]} \\ \mathbf{L r} \\ \text { lawrencium } \\ 103 \\ \hline \end{gathered}$

A sample of titanium was ionised by electron impact in a time of flight (TOF) mass spectrometer. Information from the mass spectrum about the isotopes of titanium in the sample is shown in Table 2.

Table 2

m / z	46	47	48	49
Abundance $/ \%$	9.1	7.8	74.6	8.5

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{1}$ Calculate the relative atomic mass of titanium in this sample. |
| :--- | :--- | :--- | :--- |

Give your answer to one decimal place.
[2 marks]

Relative atomic mass of titanium in this sample \qquad

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{2}$ Write an equation, including state symbols, to show how an atom of titanium is |
| :--- | :--- | :--- | :--- | ionised by electron impact and give the m / z value of the ion that would reach the detector first.

Equation

m / z value \qquad
$\begin{array}{lllll}\mathbf{0} & \mathbf{4} & . & \mathbf{3} \text { Calculate the mass, in } \mathrm{kg} \text {, of one atom of }{ }^{49} \mathrm{Ti}, ~\end{array}$
The Avogadro constant $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{4}$ | In a TOF mass spectrometer the time of flight, t, of an ion is shown by the |
| :--- | :--- | :--- | :--- | equation

$$
t=d \sqrt{\frac{m}{2 E}}
$$

In this equation d is the length of the flight tube, m is the mass, in kg , of an ion and E is the kinetic energy of the ions.

In this spectrometer, the kinetic energy of an ion in the flight tube is $1.013 \times 10^{-13} \mathrm{~J}$

The time of flight of a ${ }^{49} \mathrm{Ti}^{+}$ion is $9.816 \times 10^{-7} \mathrm{~s}$
Calculate the time of flight of the ${ }^{47} \mathrm{Ti}^{+}$ion.
Give your answer to the appropriate number of significant figures.
\qquad

Question	Answers	Mark	Additional Comments/Guidance
04.1	$(46 \times 9.1)+(47 \times 7.8)+(48 \times 74.6)+(49 \times 8.5)=\underline{4782.5}$		Correct answer scores 2 marks. Allow alternative methods. Allow 1dp or more. Ignore units
	100100		
	$=47.8$	1	
04.2		1	State symbols essential Allow electrons without ${ }^{-}$charge shown.
	or $\mathrm{Ti}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Ti}^{+}(\mathrm{g}$		
	or $\mathrm{Ti}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Ti}(\mathrm{g})$		
	or $\mathrm{Ti}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Ti}^{+}(\mathrm{g})$		
		1	

$\mathbf{0 4 . 3}$	$8.1(37) \times 10^{-26}$	1

| Question \quad Answers | Mark | Additional Comments/Guidance |
| :---: | :---: | :---: | :---: |

04.4	M 1 is for re-arranging the equation $\begin{aligned} & \mathrm{d}=\mathrm{t} \sqrt{\frac{2 \mathrm{E}}{\mathrm{~m}}} \text { or } d=\frac{t}{\sqrt{\frac{m}{2 E}}} \quad \text { or } \mathrm{d}^{2}=\mathrm{t}^{2} \times \frac{2 \mathrm{E}}{\mathrm{~m}} \\ & \mathrm{~d}=\mathrm{t}_{47} \sqrt{\frac{2 \mathrm{E}}{47 \times 10^{-3} / \mathrm{L}}}=\mathrm{t}_{49} \sqrt{\frac{2 \mathrm{E}}{49 \times 10^{-3} / \mathrm{L}}} \end{aligned}$ Or $d=1.5(47) \quad$ This scores 2 marks $=9.6(14) \times 10^{-7}$	1	Allow $\mathrm{t} \alpha$ square root of m Allow this expression for M2 $\quad \frac{t_{47}}{\sqrt{47}}=\frac{t_{49}}{\sqrt{49}}$ Correct answer scores 3 marks.
Total		8	

0	4	6
6	A sample of strontium has a relative atomic mass of 87.7 and consists of three	

In this sample, the ratio of abundances of the isotopes ${ }^{86} \mathrm{Sr}:{ }^{87} \mathrm{Sr}$ is $1: 1$
State why the isotopes of strontium have identical chemical properties.
Calculate the percentage abundance of the ${ }^{88} \mathrm{Sr}$ isotope in this sample.

Why isotopes of strontium have identical chemical properties
\qquad
\qquad
\qquad

Percentage abundance of ${ }^{88} \mathrm{Sr}$ \qquad \%

| $\mathbf{0}$ | $\mathbf{4} \cdot$ | $\mathbf{7}$ | A time of flight (TOF) mass spectrum was obtained for a sample of barium that |
| :--- | :--- | :--- | :--- | contains the isotopes ${ }^{136} \mathrm{Ba},{ }^{137} \mathrm{Ba}$ and ${ }^{138} \mathrm{Ba}$ The sample of barium was ionised by electron impact.

Identify the ion with the longest time of flight.
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | .8 | $\mathrm{~A}^{137} \mathrm{Ba}^{+}$ion travels through the flight tube of a TOF mass spectrometer with a |
| :--- | :--- | :--- | :--- | kinetic energy of $3.65 \times 10^{-16} \mathrm{~J}$ This ion takes $2.71 \times 10^{-5} \mathrm{~s}$ to reach the detector.

$K E=\frac{1}{2} m v^{2} \quad$ where $m=\operatorname{mass}(\mathrm{kg})$ and $v=\operatorname{speed}\left(\mathrm{m} \mathrm{s}^{-1}\right)$
The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Calculate the length of the flight tube in metres.
Give your answer to the appropriate number of significant figures.
\qquad m
\qquad

04.6	M1 Same electronic configuration / same number of electrons (in outer shell) / all have 37 electrons (1)	Ignore protons and neutrons unless incorrect numbers Not just electrons determine chemical properties	1
	$\text { M2 } \frac{86 x+87 x+88(100-2 x)}{100}=87.7$	Alternative: $\mathrm{M} 2 \frac{86+87+88 y}{1+1+y}=87.7$	1
	M3 $x=10 \% \quad$ (or $x=0.1)$	M3 $\mathrm{y}=8$	1
	M4 (\% abundance of 88 isotope is $100-2 \times 10)=\underline{80(.0) \%}$	M4 \% of 88 isotope is $100-10 y=80(.0) \%$ Allow other alternative methods	1
04.7	${ }^{138} \mathrm{Ba}^{+}$		1

04.8	M1 mass $=\frac{137 \times 10^{-3}}{6.022 \times 10^{23}} \quad=2.275 \times 10^{-25}(\mathrm{~kg})$	Calculation of m in kg If not converted to kg , max 4 If not divided by L lose M1 and M5, max 3	1
	$\text { M2 } \mathrm{v}^{2}=\frac{2 K E}{m}=\frac{2 \times 3.65 \times 10^{-16}}{2.275 \times 10^{-25}}=3.2088 \times 10^{9}$	For re-arrangement	1
	M3 $\mathrm{v}=\sqrt{2 \mathrm{KE} / \mathrm{m}} \quad\left(\mathrm{v}=5.6646 \times 10^{4}\right)$	For expression with square root	1
	M4 v $=\mathrm{d} / \mathrm{t}$ or $\mathrm{d}=\mathrm{vt}$ or with numbers		1
	M5 d $=\left(5.6646 \times 10^{4} \times 2.71 \times 10^{-5}\right)=1.53-1.54(\mathrm{~m})$	M5 must be to 3sf If not converted to kg , answer $=0.0485-0.0486$ (3sf). This scores 4 marks	1
04.8	Alternative Method M1 $m=\frac{137 \times 10^{-3}}{6.022 \times 10^{23}}=2.275 \times 10^{-25}$ M2 $\mathrm{v}=\mathrm{d} / \mathrm{t}$ M3 $d^{2}=\frac{K E \times 2 t^{2}}{m}$ M4 d $=\sqrt{\frac{K E x 2 t^{2}}{m}}\left(=\sqrt{ }\left(3.65 \times 10^{-16} \times 2 \times\left(2.71 \times 10^{-5}\right)^{2} / 2.275 \times 10^{-25}\right)\right)$ M5 d $=1.53-1.54(\mathrm{~m})$	M1 Calculation of m in kg M2, M3 and M4 are for algebraic expressions or correct expressions with numbers M5 must be to 3sf	1 1 1 1 1
Total			18

| $\mathbf{0}$ | $\mathbf{2}$ Time of flight (TOF) mass spectrometry can be used to analyse large molecules such |
| :--- | :--- | as the pentapeptide, leucine encephalin (\mathbf{P}).

\mathbf{P} is ionised by electrospray ionisation and its mass spectrum is shown in Figure 2.
Figure 2

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$
Describe the process of electrospray ionisation.		

Give an equation to represent the ionisation of \mathbf{P} in this process.

Description
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Equation
\qquad

| $\mathbf{0}$ | $\mathbf{2} . \mathbf{2}$ What is the relative molecular mass of \mathbf{P} ? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

555

556

557

The \mathbf{Q}^{+}ion has a kinetic energy of $2.09 \times 10^{-15} \mathrm{~J}$
This ion takes $1.23 \times 10^{-5} \mathrm{~s}$ to reach the detector.
The length of the flight tube is 1.50 m
Calculate the relative molecular mass of \mathbf{Q}.
$K E=\frac{1}{2} m v^{2} \quad$ where $m=\operatorname{mass}(\mathrm{kg})$ and $v=\operatorname{speed}\left(\mathrm{m} \mathrm{s}^{-1}\right)$
The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

| 0 | 2 |
| :--- | :--- | This question is about the isotopes of chromium.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Give the meaning of the term relative atomic mass.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .2$ | A sample of chromium containing the isotopes ${ }^{50} \mathrm{Cr},{ }^{52} \mathrm{Cr}$ and ${ }^{53} \mathrm{Cr}$ has a |
| :--- | :--- | :--- | relative atomic mass of 52.1

The sample contains 86.1% of the ${ }^{52} \mathrm{Cr}$ isotope.
Calculate the percentage abundance of each of the other two isotopes.
\qquad \% \qquad \%

[2 marks]
Similarity

Difference

The sample of chromium is analysed in a time of flight (TOF) mass spectrometer.
$\begin{array}{lll}0 & 2 & 4 \\ 4\end{array}$ can be analysed in a TOF mass spectrometer.

1

2
\qquad

Question 2 continues on the next page

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{5}$	$\mathrm{A}{ }^{53} \mathrm{Cr}^{+}$ion travels along a flight tube of length 1.25 m

The ion has a constant kinetic energy ($K E$) of $1.102 \times 10^{-13} \mathrm{~J}$

$$
K E=\frac{m v^{2}}{2}
$$

$m=$ mass of the ion $/ \mathrm{kg}$ $v=$ speed of ion $/ \mathrm{m} \mathrm{s}^{-1}$

Calculate the time, in s, for the ${ }^{53} \mathrm{Cr}^{+}$ion to travel down the flight tube to reach the detector.

The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
\qquad s

Question	Answers	Additional comments/Guidelines	Mark
02.1	Average / mean mass of 1 atom (of an element) $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$ OR Average / mean mass of atoms of an element $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$ OR Average / mean mass of atoms of an element $\times 12$ mass of one atom of ${ }^{12} \mathrm{C}$ OR (Average) mass of one mole of atoms $1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$ OR (Weighted) average mass of all the isotopes $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$ OR Average mass of an atom/isotope compared to/relative to $\mathrm{C}-12$ on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12 This expression = 2 marks	If moles and atoms mixed, $\max =1$ Mark top and bottom line independently. All key terms must be present for each mark.	1


```
M2 v v}=\frac{2KE}{m}=\mp@subsup{v}{}{2}=\frac{2\times1.102\times1\mp@subsup{0}{}{-13}}{8.8.\times1\mp@subsup{0}{}{-26}}\quad(=2.504\times1\mp@subsup{0}{}{12}
M3v=V (\frac{2\times1.102 \times10-13}{8.8. }\times1\mp@subsup{0}{}{-26}})=1.58\times1\mp@subsup{0}{}{6}(\mp@subsup{\textrm{ms}}{}{-1}
M4 v=\underline{d}
M5 t=7.9(0) \times 10-7 (s) (2sf or more)
Alternative
M1 Mass of ion = 8.8. x 10-26 kg
M2 KE= 玺}{2}{2}
M3 t = m\mp@subsup{d}{}{2}
M4 t }=6.24\times1\mp@subsup{0}{}{-13
M5 t= 7.9(0) x 10-7 (s)(2sf or more)
```

M1 Mass of ion in kg	1
M2 Rearrangement	
Alternative M2 $v=\sqrt{\frac{2 K E}{m}}$	1
M3: Calculating v by taking \sqrt{v}	1
M4: Recall of $v=d / t$	1
M5: Calculating t	1
Alternative	
M1 Mass of ion in kg	1
M2 Recall of $\mathrm{v}=\mathrm{d} / \mathrm{t}$	1
M3 Rearrangement	
	1
M4: Correct calculation to get t^{2}	1
M5: Calculating t by taking square root of M4	
	1
Allow answers consequential on incorrect M1 If mass in g calculated $=8.8 . \times 10^{-23}$, then $\mathrm{t}=2.5 \times 10^{-5} \mathrm{~s}$ (4 marks)	

A sample of rhenium is ionised by electron impact in a time of flight (TOF) mass spectrometer.
 1.450 m flight tube.

The kinetic energy of the ion is given by the equation $K E=\frac{1}{2} m v^{2}$
where
$m=$ mass / kg
$v=$ speed $/ \mathrm{m} \mathrm{s}^{-1}$
$K E=$ kinetic energy $/ \mathrm{J}$
Calculate the time, in seconds, for the ion to reach the detector.
The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{5}$ State how the relative abundance of ${ }^{185} \mathrm{Re}^{+}$is determined in a TOF mass |
| :--- | :--- | :--- | :--- | spectrometer.

\qquad
\qquad
\qquad

Question	Answers	Additional Comments/Guidelines	Mark
02.4	M1 mass ${ }^{185} \operatorname{Re}\left(=\frac{185}{6.02 \times 10^{23} \times 1000}\right)=3.072 \times 10^{-25}(\mathrm{~kg})$	calculate mass in kg	1
	$\mathrm{M} 2 \mathrm{v}=\frac{\mathrm{d}}{\mathrm{t}}$	recall of $v=d / t$	1
	M3 $v^{2}=\frac{2 \mathrm{KE}}{\mathrm{m}}$ or $7.5(0) \times 10^{11}$	rearrangement to get v^{2}	1
	$\mathrm{M} 4 \mathrm{v}=\sqrt{\frac{2 \mathrm{KE}}{\mathrm{~m}}} \text { or } 8.66 \times 10^{5}$	allow $\sqrt{\frac{2 \times 1.153 \times 10^{-13}}{\mathrm{M} 1}}$	1
	$\text { M5 } \mathrm{t}\left(=\frac{1.45}{8.66 \times 10^{5}}\right)=1.67 \times 10^{-6}(\mathrm{~s})$	M5 $t=\frac{1.45}{M 4}$	1
		allow 1.67×10^{-6} to $1.68 \times 10^{-6}(\mathrm{~s})$	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \end{aligned}$

02.4	alternative method:		
	M1 mass ${ }^{185} \operatorname{Re}\left(=\frac{185}{6.02 \times 10^{23} \times 1000}\right)=3.072 \times 10^{-25}(\mathrm{~kg})$	calculate mass in kg	1
	$M 2 v=\frac{d}{t} \quad \text { or } \quad K E=\frac{m d^{2}}{2 t^{2}}$	recall of $\mathrm{v}=\mathrm{d} / \mathrm{t}$	1
	$\text { M3 } \mathrm{t}^{2}=\frac{\mathrm{md}^{2}}{2 \mathrm{KE}}$	rearrangement to get t^{2}	1
	M4 $t=d \sqrt{\frac{m}{2 K E}}$ or $\sqrt{\frac{m d^{2}}{2 K E}}$ or $\sqrt{\frac{3.072 \times 10^{-25}}{2 \times 1.153 \times 10^{-13}}}$	allow $\sqrt{\frac{\mathrm{M} 1}{2 \times 1.153 \times 10^{-13}}}$	1
	M5 $\mathrm{t}=1.67 \times 10^{-6}(\mathrm{~s})$	allow 1.67×10^{-6} to $1.68 \times 10^{-6}(\mathrm{~s})$	$\begin{gathered} 1 \\ \text { AO1 } \\ \text { AO2 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
02.5	at the detector/(negative) plate the ions/Re ${ }^{+}$gain an electron (relative) abundance depends on the size of the current	alternative answer M1 ion knocks out an electron into electron multiplier M2 signal from electron multiplier proportional to number of ions	$\begin{gathered} 1 \\ 1 \\ \mathrm{AO} 1 \end{gathered}$

The Periodic Table of the Elements

* 58-71 Lanthanides
† 90-103 Actinides

$\begin{gathered} 140.1 \\ \mathbf{C e} \\ \text { cerium } \\ 58 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 140.9 \\ \mathbf{P r} \\ \text { praseodymium } \\ 59 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 144.2 \\ \text { Nd } \\ \text { neodymium } \\ 60 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline[145] \\ \text { Pm } \\ \text { promethium } \\ 61 \\ \hline \end{array}$	$\begin{gathered} 150.4 \\ \mathrm{Sm} \\ \text { samarium } \\ 62 \\ \hline \end{gathered}$	$\begin{gathered} 152.0 \\ \text { Eu } \\ \text { europium } \\ 63 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 157.3 \\ \text { Gd } \\ \text { gadolinium } \\ 64 \\ \hline \end{array}$	$\begin{gathered} 158.9 \\ \mathrm{~Tb} \\ \text { terbium } \\ 65 \\ \hline \end{gathered}$	$\begin{gathered} 162.5 \\ \text { Dy } \\ \text { dysprosium } \\ 66 \\ \hline \end{gathered}$	164.9 Ho holmium 67	$\begin{gathered} 167.3 \\ \text { Er } \\ \text { erbium } \\ 68 \\ \hline \end{gathered}$	$\begin{gathered} 168.9 \\ \mathrm{Tm} \\ \text { thulium } \\ 69 \\ \hline \end{gathered}$	$\begin{gathered} 173.0 \\ \text { Yb } \\ \text { ytterbium } \\ 70 \\ \hline \end{gathered}$	175.0 Lu lutetium 71
$\begin{gathered} 232.0 \\ \text { Th } \\ \text { thorium } \\ 90 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 231.0 \\ \mathrm{~Pa} \\ \text { protactinium } \\ 91 \end{array}$	$\begin{gathered} 238.0 \\ \text { uranium } \\ 92 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 237] \\ \mathbf{N p} \\ \text { neptunium } \\ 93 \end{array}$	[244] Pu plutonium 94	[243] Am americium 95	$\begin{gathered} {[247]} \\ \mathbf{C m} \\ \text { curium } \\ 96 \end{gathered}$	[247] Bk berkelium 97	$\begin{gathered} {[251]} \\ \mathbf{C f} \\ \text { californium } \\ 98 \\ \hline \end{gathered}$	$\begin{array}{\|c} {[252]} \\ \text { Es } \\ \text { einsteinium } \\ 99 \\ \hline \end{array}$	$\begin{gathered} {[257]} \\ \text { Fm } \\ \text { fermium } \\ 100 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} {[258]} \\ \mathbf{M d} \\ \text { mendelevium } \\ 101 \end{array}$	$\begin{gathered} {[259]} \\ \text { No } \\ \text { nobelium } \\ 102 \\ \hline \end{gathered}$	$\begin{gathered} {[262]} \\ \mathbf{L r} \\ \text { lawrencium } \\ 103 \\ \hline \end{gathered}$

