A' Level Chemistry Year 1

Unit 1: Time of Flight

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Quizlet Classes

Online Forms Take Time to Answer Use Paper & Calculator

Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to Andy asap.

The Periodic Table of the Elements

1	2											3	4	5	6	7	0
								1									(18)
							1.0 H										4.0 He
(1)	(2)			Key			hydrogen 1					(13)	(14)	(15)	(16)	(17)	helium 2
6.9 Li	9.0 Be		relat	ive atomic symbo l	mass							10.8 B	12.0 C	14.0 N	16.0 O	19.0 F	20.2 Ne
lithium 3	beryllium 4		atomi	name c (proton) r								boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23.0 Na	24.3 Mg			/////////								27.0	28.1	31.0	32.1	35.5	39.9
sodium	magnesium	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	Al aluminium	Si silicon	P phosphorus	S sulfur	Cl chlorine	Ar argon
<u>11</u> 39.1	12 40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	<u>13</u> 69.7	14 72.6	15 74.9	<u>16</u> 79.0	<u>17</u> 79.9	18 83.8
K potassium	Ca calcium	Sc scandium	Ti titanium	V vanadium	Cr chromium	Mn manganese	Fe iron	Co cobalt	Ni nickel	Cu copper	Zn zinc	Ga ga ll ium	Ge germanium		Se selenium	Br bromine	Kr krypton
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.5 Rb	87.6 Sr	88.9 Y	91.2 Zr	92.9 Nb	96.0 Mo	[97] Tc	101.1 Ru	102.9 Rh	106.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9	131.3 Xe
rubidium	strontium	yttrium	Zi zirconium	niobium	molybdenum		ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[209]	[210]	[222]
Cs caesium	Ba barium	La * Ianthanum	Hf hafnium	Ta tantalum	W tungsten	Re rhenium	Os osmium	ir iridium	Pt platinum	Au gold	Hg mercury	Tl tha ll ium	Pb lead	Bi bismuth	Po polonium	At astatine	Rn radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
[223]	[226]	[227]	[267]	[270]	[269]	[270]	[270]	[278]	[281]	[281]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
Fr	Ra radium	Ac † actinium	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
francium 87	88	89	104	105	106	107	hassium 108	meitnerium 109	110	111	copernicium 112	nihonium 113	flerovium 114	moscovium 115	116	tennessine 117	oganesson 118
				140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
* 58 – 7	1 Lantha	nides		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	_ Dy	Ho	Er	Tm	Yb	Lu
				cerium 58	praseodymium 59	neodymium 60	prometnium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
				232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]
† 90 – 1 0	03 Actini	ides		Th	Pa	U	Np	Pu	Am	Ċm	Bk	Cf	Es	Fm	Md	No	Lr
1 30 - 10		000		thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrencium 103
			l	90	91	92	93	94	90	90	97	90	99	100	101	102	103

0 4	mass sp	le of titanium was i bectrometer. Inforr in the sample is s	mation from	n the mass			
				Table 2			
		m/z	46	47	48	49	
		Abundance / %	9.1	7.8	74.6	8.5	
04.1		te the relative atom ur answer to one d			n this sample		marks]
04.2	Write ar	re atomic mass of t n equation, includir	ng state sy	mbols, to s	how how an		
		by electron impact ector first.	and give	ine m/z vali	le of the ion		reacn : marks]
	Equati	on					
	m/z va	lue					
04.3	Calcula	te the mass, in kg,	of one ato	om of ⁴⁹ Ti			
	The Avo	ogadro constant L =	= 6.022 ×	10 ²³ mol ⁻¹		I	[1 mark]
				Mass			kg
						IB/M/J	un17/7405/1

In a TOF mass spectrometer the time of flight, *t*, of an ion is shown by the equation

$$t = d\sqrt{\frac{m}{2E}}$$

In this equation d is the length of the flight tube, m is the mass, in kg, of an ion and E is the kinetic energy of the ions.

In this spectrometer, the kinetic energy of an ion in the flight tube is $1.013 \times 10^{-13} \; J$

The time of flight of a $^{49}\text{Ti}^{\text{+}}$ ion is 9.816 \times $10^{\text{-7}}$ s

Calculate the time of flight of the ⁴⁷Ti⁺ ion. Give your answer to the appropriate number of significant figures.

[3 marks]

Time of flight

s

8

Question	Answers	Mark	Additional Comments/Guidance
04.1	$\frac{(46 \times 9.1) + (47 \times 7.8) + (48 \times 74.6) + (49 \times 8.5)}{100} = \frac{4782.5}{100}$ = 47.8	1	Correct answer scores 2 marks. Allow alternative methods.
			Allow 1dp or more. Ignore units
	$Ti(g) \rightarrow Ti^{+}(g) + e^{-}$		
	$\begin{array}{l} \text{Ti}(g) \rightarrow \text{Ti}^{+}(g) + e^{-} \\ \text{or Ti}(g) + e^{-} \rightarrow \text{Ti}^{+}(g) + 2e^{-} \\ \text{or Ti}(g) - e^{-} \rightarrow \text{Ti}^{+}(g) \end{array}$	1	State symbols essential Allow electrons without [–] charge shown.
04.2	or $Ti(g) - e^- \rightarrow Ti^+(g)$		Allow electrons without charge shown.
	46	1	
		· ·	·
04.3	$8.1(37) \times 10^{-26}$	1	

$04.4 \qquad \begin{array}{c c} M1 \text{ is for re-arranging the equation} \\ d = t \sqrt{\frac{2E}{m}} \text{or } d = \frac{t}{\sqrt{\frac{2E}{m}}} \text{or } d^2 = t^2 \times \frac{2E}{m} \\ \end{array} \qquad \qquad \begin{array}{c c} 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-3} / \text{L}}} = t_{49} \sqrt{\frac{2E}{49 \times 10^{-3} / \text{L}}} \\ \mathbf{Or} \\ d = 1.5(47) \text{This scores 2 marks} \\ = 9.6(14) \times 10^{-7} \end{array} \qquad \qquad \begin{array}{c c} 1 \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49 \times 10^{-3} / \text{L}}} \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49 \times 10^{-3} / \text{L}}} \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49 \times 10^{-3} / \text{L}}} \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49 \times 10^{-3} / \text{L}}} \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49}} \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49}} \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49}} \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49}} \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49}} \\ 1 \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} = \frac{t_{49}}{\sqrt{49}} \\ d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-7} / \text{L}}} \\ d = t_{47} \sqrt{\frac{2E}{49 \times 10^{-7} / \text{L}}} \\ d$	Question	Answers	Mark	Additional Comments/Guidance
= 9.6(14) x 10^{-7} 1 Correct answer scores 3 marks.	04.4	$d = t \sqrt{\frac{2E}{m}} \text{ or } d = \frac{t}{\sqrt{\frac{2E}{2E}}} \text{ or } d^{2} = t^{2} \times \frac{2E}{m}$ $d = t_{47} \sqrt{\frac{2E}{47 \times 10^{-3} / L}} = t_{49} \sqrt{\frac{2E}{49 \times 10^{-3} / L}}$ Or		$\frac{t_{47}}{\sqrt{1-1}} = \frac{t_{49}}{\sqrt{1-1}}$
		$= 9.6(14) \times 10^{-7}$	1	Correct answer scores 3 marks.

0 4 . 8

8 A 137 Ba⁺ ion travels through the flight tube of a TOF mass spectrometer with a kinetic energy of 3.65 × 10⁻¹⁶ J This ion takes 2.71 × 10⁻⁵ s to reach the detector.

 $KE = \frac{1}{2}mv^2$ where m = mass (kg) and v = speed (m s⁻¹)

The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

Calculate the length of the flight tube in metres. Give your answer to the appropriate number of significant figures.

[5 marks]

Length of flight tube

m

18

	M1 Same electronic configuration / same number of electrons (in outer shell) / all have 37 electrons (1)	Ignore protons and neutrons unless incorrect numbers	1
		Not just electrons determine chemical properties	
	M2 $86x + 87x + 88(100-2x) = 87.7$	Alternative: M2 <u>86 + 87 + 88y</u> = 87.7	1
04.6	100	1 + 1 + y	
	M3 $x = 10\%$ (or $x = 0.1$)	M3 y= 8	1
	M4 (% abundance of 88 isotope is $100 - 2x10$) = <u>80(.0)%</u>	M4 % of 88 isotope is 100 – 10y = 80(.0) % Allow other alternative methods	1
04.7	¹³⁸ Ba ⁺		1

04.8	M1 mass = $\frac{137 \times 10^{-3}}{6.022 \times 10^{-23}}$ = 2.275 x 10 ⁻²⁵ (kg)	Calculation of m in kg If not converted to kg, max 4 If not divided by L lose M1 and M5, max 3	1
	M2 $v^2 = \frac{2KE}{m} = \frac{2 \times 3.65 \times 10^{-16}}{2.275 \times 10^{-25}} = 3.2088 \times 10^9$	For re-arrangement	1
	M3 v = $\sqrt{2KE/m}$ (v = 5.6646 x 10 ⁴)	For expression with square root	1
	M4 $v = d/t$ or $d = vt$ or with numbers		1
	M5 d = $(5.6646 \times 10^4 \times 2.71 \times 10^{-5}) = 1.53 - 1.54 \text{ (m)}$	M5 must be to 3sf If not converted to kg, answer = 0.0485-0.0486 (3sf). This scores 4 marks	1
	Alternative Method M1 m = $\frac{137 \times 10^{-3}}{6.022 \times 10^{-23}}$ = 2.275 x 10 ⁻²⁵	M1 Calculation of m in kg	1
04.8	M2 v = d/t M3 d ² = $\frac{\text{KE x 2 t}^2}{\text{m}}$	M2, M3 and M4 are for algebraic expressions or correct expressions with numbers	1
	M4 d = $\sqrt{\frac{KE \times 2t^2}{m}}$ (= $\sqrt{(3.65 \times 10^{-16} \times 2 \times (2.71 \times 10^{-5})^2 / 2.275 \times 10^{-25})}$)		1
	M5 d = 1.53 – 1.54 (m)	M5 must be to 3sf	1
Total			18

Question	Answers	Additional Comments/Guidelines	Mark
	M1: P dissolved or put in/added to a solvent M2: (injected through) a needle or nozzle or capillary <u>and</u> at high voltage/4000 volts or high potential	M1: Allow named solvent eg water or methanol M2: Allow needle is positively charged	1
02.1	M3: Gains a proton / H⁺	M3: Not atoms gain a proton M3: Could be scored from equation	1
	M4: $P + H^+ \rightarrow PH^+$	Correct equation gains M3 and M4 Ignore state symbols	1

02.2	555	1

	M1 V = d/t or = $1.22 \times 10^5 \text{ ms}^{-1}$	Recall this equation	1
	M2 m = $\frac{2KE}{v^2}$ or $\frac{2 \times 2.09 \times 10^{-15}}{(1.22 \times 10^5)^2}$ or	Rearrangement to give m	1
	M2 m = $\frac{2\text{KE x }t^2}{d^2}$ or $\frac{2 \times 2.09 \times 10^{-15} \text{ x} (1.23 \times 10^{-5})^2}{1.50^2}$		
02.3	M3 m = $2.8(1) \times 10^{-25}$ (kg)	M3: Calculation of m.	1
	M4 = $2.81 \times 10^{-25} \underline{\times L} = 0.169$	M4: Allow M3 x L	1
	M5 0.169 <u>x 1000</u> = 169.(2)	M5: Allow M4 x 1000 169 only scores 5 marks Allow answers to 2 significant figures or more ignore units	1

				Do not write outside the
02	This question is about the isotopes of	chromium.		box
02.1	Give the meaning of the term relative	atomic mass.	[2 marks]	
02.2	A sample of chromium containing the relative atomic mass of 52.1	isotopes ⁵⁰ Cr, ⁵² Cr and ⁵³ Cr has a		
	The sample contains 86.1% of the 52 C	Cr isotope.		
	Calculate the percentage abundance	of each of the other two isotopes.	[4 marks]	
	Abundance of ⁵⁰ Cr	% Abundance of ⁵³ Cr	%	

02.3	State, in terms of the numbers of fundamental particles, one similarity and one difference between atoms of ⁵⁰ Cr and ⁵³ Cr [2 marks]	Do not write outside the box
	Similarity	
	Difference	
02.4	The sample of chromium is analysed in a time of flight (TOF) mass spectrometer. Give two reasons why it is necessary to ionise the isotopes of chromium before they can be analysed in a TOF mass spectrometer. [2 marks]	
	1 2	
	Question 2 continues on the next page	

0 2. **5** A 53 Cr⁺ ion travels along a flight tube of length 1.25 m The ion has a constant kinetic energy (*KE*) of 1.102×10^{-13} J

$$KE = \frac{mv^2}{2}$$

m = mass of the ion / kg v = speed of ion / m s⁻¹

Calculate the time, in s, for the ⁵³Cr⁺ ion to travel down the flight tube to reach the detector.

The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

[5 marks]

Do not write outside the

box

Time

s

15

Question	Answers	Additional comments/Guidelines	Mark
02.1	Average / mean mass of 1 atom (of an element) 1/12 mass of one atom of ¹² C OR Average / mean mass of atoms of an element 1/12 mass of one atom of ¹² C OR Average / mean mass of atoms of an element ×12 mass of one atom of ¹² C OR (Average) mass of one mole of atoms 1/12 mass of one mole of ¹² C OR (Weighted) average mass of all the isotopes 1/12 mass of one atom of ¹² C OR (Weighted) average mass of all the isotopes 1/12 mass of one atom of ¹² C OR Average mass of an atom/isotope compared to/relative to C-12 on a scale in which an atom of C-12 has a mass of 12 This expression = 2 marks	If moles and atoms mixed, max = 1 Mark top and bottom line independently. All key terms must be present for each mark.	1 1

	M1 % of ${}^{50}Cr$ and ${}^{53}Cr$ = 13.9%	If x used for 50 Cr and 53 Cr or x and y, max 2 marks = M1 and M4	1
		Alternative M2	
	Let % of ${}^{53}Cr = x\%$ and Let % of ${}^{50}Cr = (13.9 - x)\%$	Let % of ${}^{53}Cr = (13.9\%-x)\%$ and % of ${}^{50}Cr = x\%$	
02.2	M2 $52.1 = \frac{50(13.9 - x) + (52 \times 86.1) + 53(x)}{100}$	M2 $52.1 = \frac{53(13.9 - x) + (52 \times 86.1) + 50x}{100}$	1
02.2	OR	OR	
	3x = 37.8	3x = 3.9	
	M3 $x = \%$ of ⁵³ Cr = 12.6%		1
	M4 % of ${}^{50}Cr = 1.3\%$	M4 = M1- M3	1
	M1 (Same) number of protons <u>OR</u> electrons	Do not allow same electronic configuration for M1	1
02.3	M2 (Different) number of neutrons		1
	M1 (lons will interact with and) be <u>accelerated</u> (by an electric	Allow (ions) accelerated to a negative plate	1
	field)	Do not allow magnetic field	
02.4			
	M2 lons create a current when hitting the detector OR	Allow (ions) can be detected	1
	ions create a current in the detector/electron multiplier.		

	M1 Mass of ion = $8.8. \times 10^{-26}$ kg	M1 Mass of ion in kg	1
	M2 $v^2 = \frac{2KE}{m} = v^2 = \frac{2 \times 1.102 \times 10^{-13}}{8.8. \times 10^{-26}}$ (= 2.504 x 10 ¹²)	M2 Rearrangement Alternative M2 $v = \sqrt{\frac{2KE}{m}}$	1
	M3 $v = \sqrt{\left(\frac{2 \times 1.102 \times 10^{-13}}{8.8. \times 10^{-26}}\right)} = 1.58 \times 10^{6} (\text{ms}^{-1})$	M3: Calculating v by taking \sqrt{v}	1
	M4 $v = \frac{d}{t}$	M4: Recall of $v = d/t$	1
	M5 $t = 7.9(0) \times 10^{-7}$ (s) (2sf or more)	M5: Calculating t	1
	Alternative	Alternative	
02.5	M1 Mass of ion = 8.8×10^{-26} kg	M1 Mass of ion in kg	1
	M2 $KE = \frac{md^2}{2t^2}$ or $v = \frac{d}{t}$	M2 Recall of $v = d/t$	1
		M3 Rearrangement	
	M3 $t^2 = \frac{md^2}{2KE}$ OR $\frac{8.8 \times 10^{-26} \times 1.25^2}{2 \times 1.102 \times 10^{-13}}$		1
		M4: Correct calculation to get t ²	1
	M4 $t^2 = 6.24 \times 10^{-13}$	ME: Coloulating the taking equare root of M4	
	M5 $t = 7.9(0) \times 10^{-7}$ (s) (2sf or more)	M5: Calculating t by taking square root of M4	1
		Allow answers consequential on incorrect M1 If mass in g calculated = 8.8. x 10^{-23} , then t = 2.5 x 10^{-5} s (4 marks)	

spectrometer. 0 2 . 4 A ¹⁸⁵Re⁺ ion with a kinetic energy of 1.153 × 10⁻¹³ J travels through a 1.450 m flight tube. The kinetic energy of the ion is given by the equation $KE = \frac{1}{2}mv^2$ where m = mass / kg $v = \text{speed} / \text{m s}^{-1}$ KE = kinetic energy / J Calculate the time, in seconds, for the ion to reach the detector. The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ [5 marks]

7

A sample of rhenium is ionised by electron impact in a time of flight (TOF) mass

s

Time

Do not write outside the box

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/1 – JUNE 2022

Question	Answers	Additional Comments/Guidelines	Mark
	M1 mass ¹⁸⁵ Re $\left(=\frac{185}{6.02 \times 10^{23} \times 1000}\right) = 3.072 \times 10^{-25}$ (kg)	calculate mass in kg	1
	M2 v = $\frac{d}{t}$	recall of $v = d/t$	1
02.4	M3 v ² = $\frac{2KE}{m}$ or 7.5(0) × 10 ¹¹	rearrangement to get v ²	1
	M4 v = $\sqrt{\frac{2KE}{m}}$ or 8.66 × 10 ⁵	allow $\sqrt{\frac{2 \times 1.153 \times 10^{-13}}{M1}}$	1
	M5 t $\left(=\frac{1.45}{8.66 \times 10^5}\right) = 1.67 \times 10^{-6}$ (s)	M5 $t = \frac{1.45}{M4}$	1
		allow 1.67 × 10 ⁻⁶ to 1.68 × 10 ⁻⁶ (s)	AO1 AO2

	alternative method:		
	M1 mass ¹⁸⁵ Re $\left(=\frac{185}{6.02 \times 10^{23} \times 1000}\right) = 3.072 \times 10^{-25}$ (kg)	calculate mass in kg	1
	M2 $v = \frac{d}{t}$ or $KE = \frac{md^2}{2t^2}$ M3 $t^2 = \frac{md^2}{2KE}$	recall of $v = d/t$	1
02.4	M3 $t^2 = \frac{md^2}{2KE}$	rearrangement to get t ²	1
	M4 t = $d\sqrt{\frac{m}{2KE}}$ or $\sqrt{\frac{md^2}{2KE}}$ or $\sqrt{\frac{3.072 \times 10^{-25}}{2 \times 1.153 \times 10^{-13}}}$	allow $\sqrt{\frac{M1}{2 \times 1.153 \times 10^{-13}}}$	1
	M5 $t = 1.67 \times 10^{-6} (s)$	allow 1.67 × 10 ^{−6} to 1.68 × 10 ^{−6} (s)	1 AO1 AO2

Question	Answers	Additional Comments/Guidelines	Mark
02.5	at the detector/(negative) plate the <u>ions/Re⁺ gain</u> an electron (relative) abundance depends on the size of the <u>current</u>	alternative answer M1 ion knocks out an electron into electron multiplier M2 signal from electron multiplier proportional to number of ions	1 1 AO1

The Periodic Table of the Elements

1	2											3	4	5	6	7	0
								1									(18)
							1.0 H										4.0 He
(1)	(2)			Key			hydrogen 1					(13)	(14)	(15)	(16)	(17)	helium 2
6.9 Li	9.0 Be		relat	ive atomic symbo l	mass							10.8 B	12.0 C	14.0 N	16.0 O	19.0 F	20.2 Ne
lithium 3	beryllium 4		atomi	name c (proton) r								boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23.0 Na	24.3 Mg			- ((27.0	28.1	31.0	32.1	35.5	39.9
sodium	magnesium	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	Al aluminium	Si silicon	P phosphorus	S sulfur	Cl chlorine	Ar argon
<u>11</u> 39.1	12 40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	<u>13</u> 69.7	<u>14</u> 72.6	<u>15</u> 74.9	<u>16</u> 79.0	<u>17</u> 79.9	18 83.8
K potassium	Ca calcium	Sc scandium	Ti titanium	V vanadium	Cr chromium	Mn manganese	Fe iron	Co cobalt	Ni nickel	Cu copper	Zn zinc	Ga ga ll ium	Ge germanium		Se selenium	Br bromine	Kr krypton
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.5 Rb	87.6 Sr	88.9 Y	91.2 Zr	92.9 Nb	96.0 Mo	[97] Tc	101.1 Ru	102.9 Rh	106.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9	131.3 Xe
rubidium	strontium	yttrium	Zi zirconium	niobium	molybdenum		ruthenium	rhodium	pa ll adium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[209]	[210]	[222]
Cs caesium	Ba barium	La * Ianthanum	Hf hafnium	Ta tantalum	W tungsten	Re rhenium	Os osmium	ir iridium	Pt platinum	Au gold	Hg mercury	Tl tha ll ium	Pb lead	Bi bismuth	Po polonium	At astatine	Rn radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
[223]	[226]	[227]	[267]	[270]	[269]	[270]	[270]	[278]	[281]	[281]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
Fr	Ra radium	Ac † actinium	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
francium 87	88	89	104	105	106	107	hassium 108	109	110	111	copernicium 112	nihonium 113	flerovium 114	moscovium 115	116	tennessine 117	oganesson 118
				140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
* 58 – 71 Lanthanides			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	_ Dy	Ho	Er	Tm	Yb	Lu	
				cerium 58	praseodymium 59	neodymium 60	prometnium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
			-	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]
† 90 – 103 Actinides			Pa	U	Ňp	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
				thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrencium 103
			L	90	91	92	30	94	90	90	97	90	99	100	101	102	103