A' Level Chemistry Year 1

Unit 1: Atomic Structure & Periodicity

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator

Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Quizlet Classes

Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Condensed Notes

Keywords & Definitions
Key Concepts
Application
Key Skills

Online Forms

Take Time to Answer
Use Paper & Calculator
Work It Out
Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

- 1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
- 2. Use your notes to fill any gaps after step 1
- 3. Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

- 2. If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
- 3. If you don't understand why the mark scheme answer is correct, see Andy.

If you struggle with the questions in the pack, **STOP!** and complete some more revision.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

0 3	This question is about periodicity, the Period 4 elements and their compour	nds.
0 3 . 1	State the meaning of the term periodicity.	[1 mark]
0 3.2	Identify the element in Period 4 with the highest electronegativity value.	[1 mark]
0 3 . 3	Identify the element in Period 4 with the largest atomic radius. Explain your answer.	[3 marks]
	ElementExplanation	
	Explanation	
0 3.4	The equations for two reactions of arsenic(III) oxide are shown.	
	$As_2O_3 + 6HCl \rightarrow 2AsCl_3 + 3H_2O$	
	$As_2O_3 + 6NaOH \rightarrow 2Na_3AsO_3 + 3H_2O$	
	Name the property of arsenic(III) oxide that describes its ability to react in the	nese two
	ways.	[1 mark]
0 3.5	Complete the equation for the formation of arsenic hydride.	[1 mark]

Question	Answers	Additional Comments/Guidelines	Mark
03.1	Repeating pattern/trends (of physical or chemical properties/reactions)	Allow named property Penalise groups	1
03.2	Bromine/Br	Not Br ₂ Accept Kr or Krypton	1
	Potassium /K	If Na or Rb lose M1 but allow access to M2 and M3 If other incorrect elements 0/3	1
03.3	Smallest number of protons/smallest nuclear charge Similar shielding / same number of shells (as other elements in period 4)	Allow same shielding	1 1
03.4	Amphoteric		1
03.5	$As_2O_3 + 6Zn + 12HNO_3 \rightarrow 2AsH_3 + 6Zn(NO_3)_2 + 3H_2O$	Accept multiples	1

0 2 . 1		number of an atom. 3 to show the number	ers of neutrons and ele	ectrons in the species	
0 2 . 2		3 to show the numbe	ers of neutrons and ele		
0 2]. 2]		3 to snow the number	ers of neutrons and ele		
	1				narks]
			Table 3		
		Number of protons	Number of neutrons	Number of electrons	
	⁴⁶ Ti	22			
	⁴⁹ Ti ²⁺	22			
0 2 . 3	This sample has In this sample th	s a relative atomic ma	of isotopes ⁴⁶ Ti, ⁴⁷ Ti a	and ⁴⁹ Ti is 2:2:1	narks]
		Δhu	ndance of ⁴⁶ Ti		%

Question	Answers	Additional comments/Guidelines	Mark
02.1	Number of protons + neutrons (in the nucleus of the atom)	Do not allow reference to mass or average Ignore references to C-12 being 12	1

Question			Answei	rs	Additional comments/Guidelines	Mark
02.2	⁴⁶ Ti ⁴⁹ Ti ²⁺	Number of protons 22 22	Number of neutrons 24 27	Number of electrons 22 20	Mark as rows	1 1

Question	Answers	Additional comments/Guidelines	Mark
	Let ⁴⁹ Ti be y M1 $47.8 = (46 \times 2y) + (47 \times 2y) + (48 \times (100 - 5y)) + (49 \times y)$ 100	Allow M1 47.8 = $(46 \times 2) + (47 \times 2) + (48 \times n) + 49$ (5 + n)	1
02.3	47.8 = <u>235y + 4800 – 240y</u> 100	M2 0.2n =4 or n=20	1
	M2 $5y = 20$ OR $y = 4$		1
	M3 abundance of ⁴⁶ Ti = 8%	M3 % 46 Ti = $\frac{2}{25}$ x 100 = 8%	

0 2	Rhenium ha	as an atomic number of 75		
0 2.1	Define the t	term relative atomic mass.		[2 marks]
0 2.2		e atomic mass of a sample of rhen		
	Table 2 sho	ows information about the two isot Table		9.
				1
		Relative isotopic mass	Relative abundance	
		To be calculated	17	
	Calculate the Show your	ne relative isotopic mass of the oth working.	ner rhenium isotope.	[2 marks]
		Relative iso	topic mass	
0 2.3	State why t	he isotopes of rhenium have the s	ame chemical properties.	[1 mark]

Question	Answers	Additional Comments/Guidelines	Mark
02.1	average/mean mass of 1 atom (of an element) 1/12 mass of one atom of ¹² C or average/mean mass of atoms of an element 1/12 mass of one atom of ¹² C or average/mean mass of atoms of an element ×12 mass of one atom of ¹² C or (average) mass of one mole of atoms 1/12 mass of one mole of ¹² C or (weighted) average mass of all the isotopes 1/12 mass of one atom of ¹² C or average mass of an atom/isotope (compared to C-12) on a scale in which an atom of C-12 has a mass of 12	M1 = top line M2 = bottom line if moles and atoms/isotopes mixed max = 1	1 1 AO1

Question	Answers	Additional Comments/Guidelines	Mark
02.2	M1 186.3 = $(185 \times 10) + (\mathbf{X} \times 17)$ 27 M2 (relative isotopic mass) = $187(.1)$	correct expression	1 1 AO2

Question	Answers	Additional Comments/Guidelines	Mark
02.3	same electron configuration	allow same number of electrons allow same electron structure ignore same number of protons ignore different number of neutrons do not accept same number of neutrons	1 AO1