A' Level Chemistry Year 1

Paper 2 Multiple Choice

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Quizlet Classes

Online Forms *Take Time to Answer*

Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

		Section B		
		Answer all questions in this section.		
Only one ans For each ans correct метно If you want to shown.	swe swe c [c ch retu	Pr per question is allowed. Tr completely fill in the circle alongside the appropriate answer. ■ WRONG METHODS S = WRONG	shown. wish to	Select as
Do not use a	ddit	ional sheets for this working.		
09	Wł he A B	nich of the following compounds would form an orange-red pre- ated with Fehling's solution? CH ₃ CH ₂ CN CH ₃ CH ₂ COOH	cipitate	when [1 mark]
	С	CH ₃ CHO	\bigcirc	
10	Pe	ntanenitrile can be made by reaction of 1-bromobutane with tassium cyanide.		
	Wł	nich of these is the correct name for the mechanism of this read	ction?	[1 mark]
	Α	Electrophilic addition	\bigcirc	[
	В	Electrophilic substitution	\bigcirc	
	С	Nucleophilic addition	\bigcirc	
	D	Nucleophilic substitution	\bigcirc	

1 1	Propene can be made by the dehydration of propan-2-ol. What is the percentage yield when 30 g of propene ($M_r = 42.0$) a 50 g of propan-2-ol ($M_r = 60.0$)?. A 60% B 67% C 81% D 86%	re formed from [1 mark]
12	 Sulfur dioxide (SO₂) is produced when some fossil fuels are burn. Which of the following statements is true? A Sulfur dioxide can be removed from waste gases in a power station by an acid-base reaction with calcium oxide. B Sulfur dioxide is insoluble in water. C Sulfur dioxide is a basic oxide. D Sulfur dioxide is an ionic compound. 	ned. [1 mark]

M/JUN16/7404/2

1 8	The structure of cyclohexene is shown.	
	Which of the following is the general formula of cyclic alkenes such	as
		[1 mark]
	A C _n H _{2n-4}	0
	B C _n H _{2n-2}	0
	C C _n H _{2n}	0
	D C_nH_{2n+2}	0
1 9	A and B react together in this reversible reaction.	
	$A + 3B \rightleftharpoons C + 2D$	
	A mixture of 10 mol of A and 10 mol of B were left to reach equilibri equilibrium mixture contained 4 mol of B .	um. The
	What is the total amount, in moles, of substances in the equilibrium	mixture?
	A 14	[1 mark]
	B 16	0
	C 18	
	D 20	
		Turn over ►

2	ิด
~	υ

2 0	Th	e $M_{\rm r}$ of hydrated copper sulfate (CuSO ₄ .5H ₂ O) is 249.6.		
	WI 50	nich of the following is the mass of hydrated copper sulfate req .0 cm ³ of a 0.400 mol dm ^{-3} solution?	uired to	make
	Α	3.19 g	\bigcirc	[1 mark]
	в	3.55 g	\bigcirc	
	С	3.71 g	\bigcirc	
	D	4.99 g	\bigcirc	
2 1	2 r	nol of ideal gas X are stored in a flask of fixed volume.		
	Wł ins	nich of the following changes would lead to the greatest increas ide the flask?	se in pro	essure
				[1 mark]
	Α	Increasing the temperature from 20 °C to 200 °C	\bigcirc	
	В	Adding another 1 mol of gas X into the flask at fixed temperature	\bigcirc	
	С	Adding 0.5 mol of argon gas and increasing the temperature from 20 $^\circ\text{C}$ to 150 $^\circ\text{C}$	\bigcirc	
	D	Removing 0.5 mol of gas X and increasing the temperature from 20 °C to 300 °C	\bigcirc	

	Ques meth equil	stions 22 and ane with stea	23 refer to the p m. The reaction	roduction of hydr mixture reaches	ogen by the re a state of dyna	action of amic
		CH₄(g)	+ H₂O(g) ≓ Co	O(g) + 3H ₂ (g)	∆ <i>H</i> =+206 kJ	mol ⁻¹
2 2	Whic the v	h of the follow alue of the eq	ving shows how uilibrium consta	the equilibrium y nt are affected by	ield of hydroge y the changes :	n and shown? [1 mark]
		Change		Effect on equilibrium yield of H₂(g)	Effect on value of <i>K</i> _c	
	Α	Increase pre	essure	decrease	decrease	0
	В	Add a cataly	/st	increase	no effect	0
	С	Increase ter	nperature	increase	increase	\bigcirc
	D	Remove CC	0(g) as formed	increase	increase	0
2 3	Some e	enthalpy data	is given in Tabl e	e 3.		
				Table 3		
	Bond	Bond enthalpy /	С-Н	0-Н	H-H	C≡O To be
	k	J mol ⁻¹	413	463	436	calculated
	Use the missing	e information i bond enthalp	n Table 3 and tl by.	ne stated enthalp	y change to ca	Iculate the
	A 234					[1 mark]
	B 106	4				0
	C 147	6				\bigcirc
	D 193	6				0
		т	urn over for th	e next question		
						Turn over >

Do not write outside the box

Question	Marking Guidance	Mark	Comments
		1	
09	С	1	
10	D	1	
11	D	1	
12	A	1	
13	В	1	
14	В	1	
15	D	1	
16	С	1	
17	A	1	
18	В	1	
19	C	1	
20	D	1	
21	С	1	
22	С	1	
23	В	1	

л	0	
1	×	

Section B
Answer all questions in this section.
Only one answer per question is allowed. For each answer completely fill in the circle alongside the appropriate answer. CORRECT METHOD ● WRONG METHODS ● ● If you want to change your answer you must cross out your original answer as shown. ● ● If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. ● You may do your working in the blank space around each question but this will not be marked
Do not use additional sheets for this working.
1 0 What is the burette reading for this transparent liquid? [1 mark]
A 24.10 cm ³
B 24.30 cm ^{\circ}
C 25.70 cm ^{\circ}
D 25.90 cm ³

1 3	Which is the most likely bond angle around the oxygen atom in etl	hanol? [1 mark]
	A 104.5°	0
	B 109.5°	0
	C 120°	0
	D 180°	0
1 4	Which compound is a structural isomer of <i>Z</i> -but-2-ene?	[1 mark]
	A butane	0
	B E-but-2-ene	0
	C cyclobutane	0
	D methylbut-2-ene	0
1 5	Which equation is a propagation step in the conversion of trichloro tetrachloromethane by reaction with chlorine in the presence of ult	omethane into traviolet light? [1 mark]
		0
	$\mathbf{B} \bullet \mathrm{CCl}_3 \ + \ \bullet \mathrm{Cl} \ \longrightarrow \ \mathrm{CCl}_4$	0
	$\mathbf{C} \mathrm{CHCl}_3 \ + \ \mathbf{\bullet}\mathrm{Cl} \ \rightarrow \ \mathrm{CCl}_4 \ + \ \mathbf{\bullet}\mathrm{H}$	\bigcirc
	$\mathbf{D} \bullet \mathbf{CCl}_3 \ + \ \mathbf{Cl}_2 \ \longrightarrow \ \mathbf{CCl}_4 \ + \ \bullet \mathbf{Cl}$	\bigcirc

Do not write outside the box

IB/M/Jun17/7404/2

Question	Marking Guidance			
10	В	20	С	
11	C	21	D	
12	A	22	В	
[
13	Α	23	А	
Γ	1			
14	С	24	С	
15	D			
16	D			
17	В			
18	В			
19	A			

Section B		
Answer all questions in this section.		
ne answer per question is allowed. ch answer completely fill in the circle alongside the appropriate answer		
METHOD WRONG METHODS 🐼 💿 🚓 🔯		
vant to change your answer you must cross out your original answer as	s shown. 🔀	
vish to return to an answer previously crossed out, ring the answer you wn.	now wish to se	əlect
ay do your working in the blank space around each question but this wi use additional sheets for this working.	ll not be marke	d.
A student has a 10 cm ³ sample of 1.00×10^{-2} mol dm ⁻³ methanoic ac The student is asked to dilute the methanoic acid solution to a concer of 2.00 × 10 ⁻⁴ mol dm ⁻³ by adding distilled water.	cid solution. ntration	
Which volume of water should be added?	[1	l mark]
A 200 cm ³	0	
B 490 cm ³	0	
C 500 cm ³	0	
D 510 cm ³	0	
Which molecule does not have a permanent dipole?		
	[1	mark]
A CH ₃ Br	0	
B CH ₂ Br ₂	0	
C CHBr ₃	0	
D CBr ₄	0	
	Section B Answer all questions in this section. ne answer per question is allowed. ch answer completely fill in the circle alongside the appropriate answer ImeTHOD ● WRONG METHODS ● ● ● ● ImeTHOD ● WRONG METHODS ● ● ● ● A student has a pour answer you must cross out your original answer as wish to return to an answer previously crossed out, ring the answer you wrn. ● A student has a 10 cm ³ sample of 1.00×10^{-2} mol dm ⁻³ methanoic act The student is asked to dilute the methanoic acid solution to a concert of 2.00×10^{-4} mol dm ⁻³ by adding distilled water. Which volume of water should be added? A 200 cm ³ B 490 cm ³ C 500 cm ³ D 510 cm ³ Which molecule does not have a permanent dipole? A CH ₃ Br B CH ₂ Br ₂ C CHBr ₃ D CBr ₄	Section B Answer all questions in this section. me answer per question is allowed. chanswer completely fill in the circle alongside the appropriate answer. INTERNOL INTERN

1 3	Which compound has the highest boiling point?	[1 mark]
	A butanal	0
	B butan-2-ol	0
	C but-2-ene	0
	D 1-fluorobutane	0
1 4	Which statement is correct about the fractional distillation of crude oil?	[1 mark]
	A A zeolite catalyst is used.	0
	B Each fraction contains a mixture of hydrocarbons.	0
	C Gaseous fractions are formed by breaking covalent bonds.	0
	D The fractionating column is hottest at the top.	0
1 5	How many structural isomers with an unbranched carbon chain have th	e molecular
	formula C ₄ H ₈ Br ₂ ?	[1 mark]
	A 4	0
	B 5	0
	C 6	0
	D 7	0

1 8	Which species co	ould act as a nu	icleophile?		[1 mark]
	A BH ₃			0	
	B NH_4^+			0	
	C PH₃			0	
	\mathbf{D} SiH ₄			0	
19	Which statement	is correct abou	it poly(chloroethene)?		[1 mark]
	A It has the emp	pirical formula C	HCI	0	
	B It decolourises	s bromine water	r.	0	
	C Its brittleness	is reduced by p	lasticisers.	0	
	D Its polymer ch	ain contains alt	ernate single and double bonds.	0	
2 0	What is the entha	alpy of formation	n of buta-1,3-diene, C₄H ₆ (g)?		
		Substance	Enthalpy of combustion / kJ mol ⁻	-1	
		C ₄ H ₆ (g)	-2546		
		C(s)	_394		
		H ₂ (g)	-286		[4
					[1 mark]
	A +112 kJ mol ⁻¹			0	
	B –112 kJ mol ⁻¹			0	
	C +746 kJ mol ⁻¹			0	
	D –746 kJ mol ⁻¹			0	

15

Question	Marking Guidance	Mark	Comments
		1	1
9	В	1	490 cm ³
10	D	1	CBr ₄
11	C	1	$ \begin{array}{c} CH_{3} \\ CH_{3} - C - CH_{3} \\ CI \\ CI \end{array} $
12	C	1	The higher the temperature, the higher the equilibrium yield of ethanol
13	В	1	butan-2-ol
14	В	1	each fraction is a mixture of hydrocarbons
15	С	1	6
16	D	1	D
17	В	1	36.4%
18	С	1	PH ₃
19	С	1	Its brittleness is reduced by plasticisers
20	Α	1	+112

Question	Marking Guidance	Mark	Comments
21	C	1	6.8 x 10 ²⁵
22	c	1	1.20 g of dichloromethane (density = 1.33 g cm^{-3})
23	D	1	$CH_3CFCI_2 \rightarrow CH_3CFCI \bullet + CI \bullet$

Only one an For each ans correct Method If you want to as shown.	Answer all questions in this section.	answer. swer as shown. ∫ ver you now wish t this will not be m	to select arked.
Only one an For each ans correct Metho If you want to as shown. You may do Do not use a	The swer per question is allowed. Swer completely fill in the circle alongside the appropriate a OD WRONG METHODS COMMENDER CONSTRUCTION to change your answer you must cross out your original ans to change your answer previously crossed out, ring the answer o return to an answer previously crossed out, ring the answer your working in the blank space around each question but additional sheets for this working.	answer. swer as shown.) ver you now wish this will not be m	to select arked.
Only one an For each ans correct METHO If you want to as shown.	Aswer per question is allowed. Swer completely fill in the circle alongside the appropriate a OD WRONG METHODS SOLUTION OF SOLUTION to change your answer you must cross out your original ans to return to an answer previously crossed out, ring the answ o return to an answer previously crossed out, ring the answ your working in the blank space around each question but additional sheets for this working.	answer. swer as shown. ∫ ver you now wish t this will not be m	to select arked.
CORRECT METHO If you want to If you wish to as shown.	OD WRONG METHODS Image of the second se	swer as shown. 〕 ver you now wish t this will not be m	to select arked.
If you want to If you wish to as shown.	to change your answer you must cross out your original ans o return to an answer previously crossed out, ring the answ vour working in the blank space around each question but additional sheets for this working.	swer as shown. 〕 ver you now wish : this will not be m	to select arked.
If you wish to as shown. You may do Do not use a	o return to an answer previously crossed out, ring the answ your working in the blank space around each question but additional sheets for this working.	ver you now wish this will not be m	to select arked.
You may do Do not use a	your working in the blank space around each question but additional sheets for this working.	this will not be m	arked.
10	A 'drink-driving' offence is committed if the blood alcohol le 80 mg of ethanol per 100 cm ³ of blood. What is the concentration, in mol dm ⁻³ , of ethanol if there a $(M_r = 46.0)$ per 100 cm ³ of blood?	evel of a driver is o are 80 mg of ethai	over nol [1 mark]
	A 0.00017	0	
	B 0.0017	0	
	C 0.017	0	
[D 1.7	0	

Do not write outside the 1 4 How many isomers are there of C₃H₉N? [1 mark] **A** 2 \bigcirc **B** 3 \bigcirc **C** 4 $^{\circ}$ **D** 5 \bigcirc 1 5 Which equation represents a propagation step? [1 mark] $\mathbf{A} \cdot \mathbf{CH}_2\mathbf{Cl} + \mathbf{Cl} \cdot \rightarrow \mathbf{CH}_2\mathbf{Cl}_2$ \bigcirc **B** •CH₃ + •CH₃ \rightarrow C₂H₆ \bigcirc **C** $Cl_2 \rightarrow Cl \cdot + Cl \cdot$ $^{\circ}$ **D** $CH_3Cl + Cl \rightarrow \bullet CH_2Cl + HCl$ \bigcirc 1 6 Which compound can react with ammonia to produce propylamine? [1 mark] A CH₃CH=CH₂ $^{\circ}$ \bigcirc **B** CH₃CH₂CH₂OH $C CH_3CH_2CH_2Br$ \circ D CH₃CH₂CH₃ \bigcirc

box

Do not write outside the 2 0 Which alcohol forms a mixture of alkenes when dehydrated? [1 mark] \bigcirc A propan-1-ol B propan-2-ol \bigcirc C pentan-1-ol \bigcirc D pentan-2-ol \bigcirc 2 1 Which compound has the highest boiling point? [1 mark] A CH₃CH₂CH₂Br \bigcirc **B** CH₃CH₂CH₂F \bigcirc C CH₃CH₂CHO \bigcirc \bigcirc D CH₃CH₂COOH 2 2 Which compound could not be produced by reacting 2-bromo-3-methylbutane with sodium hydroxide? [1 mark] A 2-methylbut-1-ene \bigcirc B 3-methylbut-1-ene \bigcirc C 2-methylbut-2-ene \bigcirc **D** 3-methylbutan-2-ol \bigcirc

box

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/G/Jun19/7404/2

MARK SCHEME - AS CHEMISTRY - 7404/2 - JUNE 2019

Question	Marking Guidance	Mark	Comments
	T	1	T
10	С	1	0.017
11	D	1	The mean energy of the molecules is greater than the most probable energy of the molecules
12	Α	1	1.5
13	D	1	CH ₂ =CHCH ₂ CHO
14	C	1	4
15	D	1	$CH_3CI + CI \bullet \rightarrow \bullet CH_2CI + HCI$
16	C	1	CH ₃ CH ₂ CH ₂ Br
17	Α	1	It displays <i>E-Z</i> isomerism
18	D	1	3-methylbutan-2-ol
19	В	1	CH ₃ OH
20	D	1	pentan-2-ol
21	D	1	CH ₃ CH ₂ COOH
22	Α	1	2-methylbut-1-ene
23	В	1	4-hydroxybutanone
24	Α	1	2.28 x 10 ⁻¹⁸ J

Answer all questions in this section. Only one answer per question is allowed. For each answer completely fill in the circle alongside the appropriate answer. CORRECT METHOD • WRONG METHODS • • • • • • • • • • • • • • • • • • •		
 Only one answer per question is allowed. For each answer completely fill in the circle alongside the appropriate answer. CORRECT METHOD wrong METHODS word wrong methods wrong answer you must cross out your original answer as a fill you want to change your answer you must cross out your original answer as as if you wish to return to an answer previously crossed out, ring the answer you n as shown. You may do your working in the blank space around each question but this will Do not use additional sheets for this working. O 9 Which statement is correct about thermal cracking? A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C-C bonds are broken. D Zeolite catalysts are used. 1 Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 		
 Only one answer per question is allowed. For each answer completely fill in the circle alongside the appropriate answer. CORRECT METHOD • WRONG METHODS • • • • • If you want to change your answer you must cross out your original answer as a fi you wish to return to an answer previously crossed out, ring the answer you n as shown. You may do your working in the blank space around each question but this will Do not use additional sheets for this working. O 9 Which statement is correct about thermal cracking? A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C-C bonds are broken. D Zeolite catalysts are used. 1 Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 		
CORRECT METHOD WRONG METHODS Image: Ima		
If you want to change your answer you must cross out your original answer as a If you wish to return to an answer previously crossed out, ring the answer you n as shown. You may do your working in the blank space around each question but this will Do not use additional sheets for this working. Which statement is correct about thermal cracking? A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C–C bonds are broken. D Zeolite catalysts are used. Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen.		
If you wish to return to an answer previously crossed out, ring the answer you n as shown. You may do your working in the blank space around each question but this will be not use additional sheets for this working. Which statement is correct about thermal cracking? A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C–C bonds are broken. D Zeolite catalysts are used. Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen.	hown.	\mathbf{X}
 You may do your working in the blank space around each question but this will Do not use additional sheets for this working. Which statement is correct about thermal cracking? A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C–C bonds are broken. D Zeolite catalysts are used. 1 0 Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 	ow wish t	to select
 Which statement is correct about thermal cracking? A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C–C bonds are broken. D Zeolite catalysts are used. Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 	not be ma	arked.
 A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C-C bonds are broken. D Zeolite catalysts are used. Mhich statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 		[1 mark]
 B Aromatic hydrocarbons are the major products. C C-C bonds are broken. D Zeolite catalysts are used. M Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 	0	
 C C-C bonds are broken. D Zeolite catalysts are used. M Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 	0	
 D Zeolite catalysts are used. Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 	0	
10Which statement is not correct about ozone?AIt absorbs harmful ultraviolet radiation in the upper atmosphere.BIt decomposes to form oxygen.	0	
 A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 		
A It absorbs harmful ultraviolet radiation in the upper atmosphere.B It decomposes to form oxygen.		[1 mark]
B It decomposes to form oxygen.	0	
	0	
C Its decomposition is catalysed by chlorine molecules.	0	
D Ozone holes are regions of the upper atmosphere where there is a reduced concentration of ozone.	0	

IB/M/Jun20/7404/2

			Do not write outside the
1 1	What is the IUPAC name for this compound?		box
	CH ₃		
	$CH_3 - CH_2 - CH - CH_3$		
	F CH ₃	[4. w. e. e. l.]	
		[1 mark]	
	A 2-dimethyl-3-fluoropentane	0	
	B 2,2-dimethyl-3-fluoropentane	0	
	C 3-fluoro-2,2-dimethylpentane	0	
	D 3-fluoro-2-dimethylpentane	0	
1 2	What is the IUPAC name of the major product of the reaction betweer 2-ethylbut-1-ene and hydrogen bromide?	ı	
		[1 mark]	
	A 1-bromo-2-ethylbutane	0	
	B 2-bromo-2-ethylbutane	0	
	C 2-bromo-2-methylpentane	0	
	D 3-bromo-3-methylpentane	0	
1 3	Which can be used to distinguish between these two compounds?		
	(CH ₃) ₂ CHCH ₂ CHO and (CH ₃) ₃ CCHO	[1 mark]	
	A Acidified potassium dichromate(VI)	0	
	B Fingerprint region of infrared spectrum	0	
	C $M_{\rm r}$ value in high resolution mass spectrometry	0	
	D Tollens' reagent	0	

1 7	Which compound has the lowest relative molecular mass?	[1 mark]	Do not write outside the box
	A ethanoic acid	0	
	B 1-fluoropropane	0	
	C propanenitrile	0	
	D propylamine	0	
1 8	Which statement is correct about the production and use of ethanol as	s a biofuel? [1 mark]	
	A Biofuel ethanol is produced by the fermentation of glucose in the presence of yeast and air.	0	
	B Biofuel ethanol is purified by fractional distillation.	0	
	C No carbon dioxide is released when biofuel ethanol is burned.	0	
	D Biofuel ethanol burns with a cleaner flame than ethanol made by hydration of ethene.	0	
19	What is the minimum volume of 0.0500 mol dm ⁻³ aqueous bromine ne completely with 0.0200 g of buta-1,3-diene?	eeded to react	
	(<i>M</i> _r of buta-1,3-diene = 54.0)	[1 mark]	
	A 7.40 cm ³	0	
	B 14.8 cm ³	0	
	C 29.6 cm ³	0	
	D 67.5 cm ³	0	

Do not write outside the 2 0 box Which statement about the molecules in a sample of a gas is correct? [1 mark] \bigcirc **A** At a given temperature they all move at the same speed. \bigcirc **B** At a given temperature their average kinetic energy is constant. C As temperature increases, there are more molecules with the \bigcirc most probable energy. D As temperature decreases, there are fewer molecules with the \bigcirc mean energy. 2 1 Some enthalpy change data are shown. $C(s) + 2 \, H_2(g) \to CH_4(g)$ $\Delta H = -75 \text{ kJ mol}^{-1}$ $H_2(g) \rightarrow 2 H(g)$ $\Delta H = +436 \text{ kJ mol}^{-1}$ What is the enthalpy change, in kJ mol⁻¹, for the following reaction? $CH_4(g) \rightarrow C(s) + 4H(g)$ [1 mark] **A** -947 \bigcirc **B** -361 \bigcirc **C** +361 \bigcirc **D** +947 \bigcirc Turn over for the next question

IB/M/Jun20/7404/2

Question	Marking Guidance	Mark	Comments
			•
9	С	1	C-C bonds are broken
10	С	1	Its decomposition is catalysed by chlorine molecules
11	С	1	3-fluoro-2,2-dimethylpentane
12	D	1	3-bromo-3-methylpentane
13	В	1	Fingerprint region of infrared spectrum
14	D	1	CH ₃ CI and HCI
15	D	1	Ethene with concentrated sulfuric acid
16	С	1	C ₃ H ₄
17	С	1	Propanenitrile
18	В	1	Biofuel ethanol is purified by fractional distillation
19	В	1	14.8 cm ³
20	В	1	At a given temperature their average kinetic energy is constant
21	D	1	+947
22	D	1	7.7%
23	A	1	$-\frac{c \ w \ \Delta T \ M_r}{b}$

	Section B		Do r out:
	Answer all questions in this section.		
Ónly on For each	answer per question is allowed. answer completely fill in the circle alongside the appropriate answe	r.	
CORRECT	IETHOD WRONG METHODS 🐼 💿 📾 💅		
lf you wa	int to change your answer you must cross out your original answer a	s shown. 🔀	
lf you wi as show	sh to return to an answer previously crossed out, ring the answer you n.	u now wish to select	
You may Do not u	do your working in the blank space around each question but this w se additional sheets for this working.	vill not be marked.	
) 9	Which alkene shows <i>E</i> – <i>Z</i> isomerism?	[1 mark]	
	A 2,3-dimethylbut-2-ene	0	
	B 4-methylpent-2-ene	0	
	C methylpropene	0	
	D pent-1-ene	0	
1 0	A compound contains 40.0% carbon, 6.7% hydrogen and 53.3%	oxygen by mass.	
1 0	A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% Which could be the molecular formula of this compound?	oxygen by mass. [1 mark]	
0	A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% Which could be the molecular formula of this compound? A $C_2H_2O_2$	oxygen by mass. [1 mark]	
1 0	A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% Which could be the molecular formula of this compound? A C ₂ H ₂ O ₂ B C ₂ H ₂ O	oxygen by mass. [1 mark]	
1 0	 A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% Which could be the molecular formula of this compound? A C₂H₂O₂ B C₂H₂O C C₂H₄O₂ 	oxygen by mass. [1 mark]	

1 7

The reactions of 1-bromopropane and 1-chloropropane with potassium cyanide in aqueous ethanol occur at different rates under the same conditions.

Which row correctly shows the compound that has a faster rate of reaction and the correct reason for this?

[1 mark]

Do not write outside the

box

	Compound	Reason	
Α	1-bromopropane	C–Br bond weaker than C–Cl bond	0
в	1-bromopropane	C–Br bond stronger than C–Cl bond	0
с	1-chloropropane	C–Br bond weaker than C–Cl bond	0
D	1-chloropropane	C–Br bond stronger than C–Cl bond	0

Which compound has a molecular formula that is different from the others?

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Turn over for the next question

2 1 An excess of magnesium reacts with hydrochloric acid to form hydrogen gas.

Line **X** on the graph shows how the volume of hydrogen produced changes with time as magnesium reacts with 30 cm³ of 1.0 mol dm⁻³ hydrochloric acid.

The reaction is repeated using 20 cm 3 of 2.0 mol dm $^{-3}$ hydrochloric acid, with all other conditions the same.

Which line shows how the volume of hydrogen produced changes with time?

[1 mark]

Do not write outside the

box

Question	Marking Guidance	Mark	Comments
9	В	1	4-methylpent-2-ene
10	С	1	$C_2H_4O_2$
11	В	1	1.74 x 10 ⁻²
12	D	1	•CH ₃ + Cl ₂ \rightarrow CH ₃ Cl + Cl•
13	В	1	3-methylhex-1-ene
14	D	1	butanenitrile
15	В	1	$CH_3 - CH_2 - CH_2 - Br$
16	A	1	1-bromopropane, C–Br bond weaker than C–Cl bond
17	A	1	
18	D	1	(CH ₃) ₂ CHCH=CH ₂

19	D	1	An increase in pressure increases the value of $K_{\rm c}$
20	С	1	The rate of the reverse reaction increases.
21	В	1	
22	A	1	It can be removed from car exhaust gases by a catalytic converter.
23	С	1	51.1%

	Section B		Do out
	Answer all questions in this section.		
Ónly on For each	answer per question is allowed. answer completely fill in the circle alongside the appropriate answe	r.	
CORRECT N	IETHOD WRONG METHODS 🐼 💿 📾 💅		
lf you wa	ant to change your answer you must cross out your original answer a	is shown.	
lf you wi as show	sh to return to an answer previously crossed out, ring the answer you n.	u now wish to select	
You may Do not u	[,] do your working in the blank space around each question but this w se additional sheets for this working.	/ill not be marked.	
) 9	Which alkene shows <i>E</i> – <i>Z</i> isomerism?	[1 mark]	
	A 2,3-dimethylbut-2-ene	0	
	B 4-methylpent-2-ene	0	
	C methylpropene	0	
	D pent-1-ene	0	
1 0	A compound contains 40.0% carbon, 6.7% hydrogen and 53.3%	oxygen by mass.	
1 0	A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% Which could be the molecular formula of this compound?	oxygen by mass. [1 mark]	
10	A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% Which could be the molecular formula of this compound? A $C_2H_2O_2$	oxygen by mass. [1 mark]	
10	A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% Which could be the molecular formula of this compound? A C ₂ H ₂ O ₂ B C ₂ H ₂ O	oxygen by mass. [1 mark]	
10	 A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% Which could be the molecular formula of this compound? A C₂H₂O₂ B C₂H₂O C C₂H₄O₂ 	oxygen by mass. [1 mark]	

1 7

The reactions of 1-bromopropane and 1-chloropropane with potassium cyanide in aqueous ethanol occur at different rates under the same conditions.

Which row correctly shows the compound that has a faster rate of reaction and the correct reason for this?

[1 mark]

Do not write outside the

box

	Compound	Reason	
Α	1-bromopropane	C–Br bond weaker than C–Cl bond	0
в	1-bromopropane	C–Br bond stronger than C–Cl bond	0
с	1-chloropropane	C–Br bond weaker than C–Cl bond	0
D	1-chloropropane	C–Br bond stronger than C–Cl bond	0

Which compound has a molecular formula that is different from the others?

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Turn over for the next question

2 1 An excess of magnesium reacts with hydrochloric acid to form hydrogen gas.

Line **X** on the graph shows how the volume of hydrogen produced changes with time as magnesium reacts with 30 cm³ of 1.0 mol dm⁻³ hydrochloric acid.

The reaction is repeated using 20 cm 3 of 2.0 mol dm $^{-3}$ hydrochloric acid, with all other conditions the same.

Which line shows how the volume of hydrogen produced changes with time?

[1 mark]

Do not write outside the

box

Question	Marking Guidance	Mark	Comments
9	В	1	4-methylpent-2-ene
10	С	1	$C_2H_4O_2$
11	В	1	1.74 x 10 ⁻²
12	D	1	•CH ₃ + Cl ₂ \rightarrow CH ₃ Cl + Cl•
13	В	1	3-methylhex-1-ene
14	D	1	butanenitrile
15	В	1	$CH_3 - CH_2 - CH_2 - Br$
16	A	1	1-bromopropane, C–Br bond weaker than C–Cl bond
17	A	1	
18	D	1	(CH ₃) ₂ CHCH=CH ₂

19	D	1	An increase in pressure increases the value of $K_{\rm c}$
20	С	1	The rate of the reverse reaction increases.
21	В	1	
22	A	1	It can be removed from car exhaust gases by a catalytic converter.
23	С	1	51.1%

	Section B		Do no outsi Ł	
Answer all questions in this section.				
Only on For each	e answer per question is allowed. In answer completely fill in the circle alongside the ap	ppropriate answer.		
CORRECT N	METHOD • WRONG METHODS 🐼 • 🐟 🚸			
lf you wa	ant to change your answer you must cross out your	original answer as shown. 🔀		
lf you wi as show	sh to return to an answer previously crossed out, rin n.	g the answer you now wish to select		
You may Do not u	/ do your working in the blank space around each qu use additional sheets for this working.	uestion but this will not be marked.		
0 8	When hexadecane (C ₁₆ H ₃₄) is heated to a high t hexadecane decomposes to form an alkane cor two different unsaturated compounds.	emperature, one molecule of ntaining eight carbon atoms and		
	Which equation could represent this reaction?	[1 mark]		
	A $C_{16}H_{34} \rightarrow C_8H_{16} + C_5H_{12} + C_3H_6$			
	B $C_{16}H_{34} \rightarrow C_8H_{18} + C_6H_{10} + C_2H_6$			
	C $C_{16}H_{34} \rightarrow C_8H_{18} + 2C_2H_4 + C_4H_8$			
	D $C_{16}H_{34} \rightarrow C_8H_{18} + C_6H_{14} + C_2H_2$			

IB/M/Jun22/7404/2

box

Do not write outside the 1 4 box Which statement about molecules in a gas is correct? [1 mark] \bigcirc **A** At a fixed temperature they all move at the same speed. **B** At a fixed temperature their average kinetic energy is constant. \bigcirc As temperature increases, there are more molecules with the most С \bigcirc probable energy. D As temperature decreases, there are fewer molecules with the \bigcirc mean energy. 1 5 Which compound produces (CH₃)₂CHCOCH₃ when oxidised? [1 mark] A 2-methylpropan-1-ol \bigcirc **B** 2,2-dimethylpropanol \bigcirc C 2-methylbutan-2-ol **D** 3-methylbutan-2-ol \bigcirc 1 6 Which reaction does **not** result in a change in the shape around a carbon atom? [1 mark] A chloromethane with aqueous sodium hydroxide \bigcirc **B** ethene with bromine \bigcirc C propane with excess oxygen **D** propan-1-ol with acidified potassium dichromate(VI) \bigcirc

1 9	2.0 mol of carbon monoxide is mixed with 3.0 mol of hydrogen and allowed to equilibrium.	reach	ite 1e
	The equilibrium mixture contains 0.6 mol of methanol.		
	What is the total amount, in mol, of gas at equilibrium?	[1 mark]	
	A 3.2		
	B 3.8 \bigcirc		
	C 4.4		
	D 5.0		
2 0	Which change in condition will decrease the equilibrium yield of methanol?	[1 mark]	
	A Increase the amount of CO in the equilibrium mixture.		
	B Increase the pressure.		
	C Increase the surface area of the catalyst.		
	D Increase the temperature.		
	Turn over for the next question		

		Do not write outside the
	Questions 21 and 22	box
	When 2-bromobutane is warmed with potassium hydroxide solution, substitution and elimination reactions both occur.	
2 1	Which of these compounds is not produced?	
	A butan-1-ol	
	B butan-2-ol	
	C but-1-ene	
	D E-but-2-ene	
2 2	What is the role of the hydroxide ions in the elimination reaction? [1 mark]	
	• h	
	A base	
	B catalyst	
	C electrophile	
	D nucleophile	15
	END OF QUESTIONS	

Question	Marking Guidance	AO	Mark	Comments
8	С	AO2	1	$C_{16}H_{34} \to C_8H_{18} + 2C_2H_4 + C_4H_8$
9	D	AO1	1	Kerosene is a mixture of compounds
10	С	AO1	1	It has a higher melting point than ethene
11	A	AO3	1	The monomer is propanenitrile
12	D	AO3	1	pentan-2-ol
13	В	AO2	1	CH ₃ CH ₂ CH ₂ CH ₂ OH
14	В	AO1	1	At a fixed temperature their average kinetic energy is constant
15	D	AO1	1	3-methylbutan-2-ol
16	Α	AO2	1	chloromethane with aqueous sodium hydroxide
17	С	AO1	1	propane
18	В	AO2	1	$K_{\rm c} = \frac{[\rm CH_3OH]}{[\rm CO] \ [H_2]^2}$
19	В	AO2	1	3.8
20	D	AO3	1	Increase the temperature
21	Α	AO2	1	butan-1-ol
22	Α	AO1	1	base