A' Level Chemistry
 Year 1

Paper 1 Multiple Choice

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes
Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

Section B

Answer all questions in the spaces provided

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD \quad WRONG METHODS $\otimes \infty$
If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working out in the blank spaces around the questions but this will not be marked. Do not use additional sheets for this working.

$\mathbf{1}$	$\mathbf{0}$	Which element is in the d-block of the Periodic Table?

A Selenium
B Antimony
C Tantalum
D Lead

| 1 | 1 |
| :--- | :--- | Which species contains an element with an oxidation state of +4 ?

A $\mathrm{NO}_{2}{ }^{+}$

B $\mathrm{ClO}_{3}{ }^{-}$
C $\mathrm{H}_{2} \mathrm{SO}_{3}$
D PCl_{5}
 What is the density of gold in $\mathrm{kg} \mathrm{dm}^{-3}$?

A 193

B 19.3

C 1.93
D 0.193

| 1 | 3 |
| :--- | :--- | lons of two isotopes of iron are

$$
{ }^{53} \mathrm{Fe}^{2+} \quad{ }^{56} \mathrm{Fe}^{2+}
$$

Which statement is correct?

A The ions of both the isotopes have the electronic configuration \square $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$

B The ions of both the isotopes contains 26 neutrons \square
C ${ }^{53} \mathrm{Fe}^{2+}$ has fewer protons than ${ }^{56} \mathrm{Fe}^{2+}$ \square
D After acceleration to the same kinetic energy ${ }^{56} \mathrm{Fe}^{2+}$ will move 0 more slowly than ${ }^{53} \mathrm{Fe}^{2+}$

1	$\mathbf{4} \quad$ The successive ionisation energies for element X are shown in Figure 3.

Figure 3

Which element is X ?

A Nitrogen

B Phosphorus
C Aluminium

D Boron

1	5	Which of these decreases down Group 2?

A First ionisation energy
B Atomic radius \square
C Number of protons
D Reactivity with water

Refer to the unbalanced equation below when answering questions 16 and 17.

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}
$$

1	6	In the balanced equation the mole ratio for sulfuric acid to water is

A 1: 4
\bigcirc
B 1:2
C 4:7
D 4:9 \square

1	$\mathbf{7} \quad$ What is the reducing agent in this reaction?

A H^{+}
B $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ \square
C K^{+} \square
D $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ \square

1	8	Which substance exists as a macromolecule?

A Cu
B SiO_{2} \square
C $\mathrm{P}_{4} \mathrm{O}_{10}$

D MgO

| 1 | 9 | A pale brown mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to reach equilibrium in a sealed |
| :--- | :--- | :--- | gas syringe according to the following equation.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

When the plunger is pushed further into the syringe the pressure increases and the mixture becomes paler in colour.

When the syringe is placed in a hot oven the mixture becomes darker in colour.
Which of the following statements is correct?
A NO_{2} is brown and the forward reaction is exothermic. \square
B NO_{2} is brown and the forward reaction is endothermic.
C NO_{2} is colourless and the forward reaction is exothermic.
D NO_{2} is colourless and the forward reaction is endothermic.

| $\mathbf{2}$ | $\mathbf{0}$ Which molecule has the largest dipole? |
| :--- | :--- | :--- |

A ClF_{3}
B BF_{3} \square
C SF_{6}
D CF_{4}

| 2 | 1 |
| :--- | :--- | In a molecule of a hydrocarbon, the fraction by mass of carbon is $\frac{9}{11}$

What is the empirical formula of the hydrocarbon?
A CH \square
B CH_{3} \square
C $\mathrm{C}_{3} \mathrm{H}_{8}$
D $\mathrm{C}_{5} \mathrm{H}_{12}$

| $\mathbf{2}$ | $\mathbf{2}$ |
| :--- | :--- | the following equation. Assume that the temperature and pressure remain constant.

$$
\mathrm{Xe}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{XeF}_{2}(\mathrm{~g})
$$

What is the final volume of gas after the reaction is complete?
A $50 \mathrm{~cm}^{3}$

B $40 \mathrm{~cm}^{3}$
C $30 \mathrm{~cm}^{3}$
D $20 \mathrm{~cm}^{3}$

| 2 | 3 | Which of the following solutions would react exactly with a solution containing |
| :--- | :--- | :--- | 0.0500 mol sulfuric acid?

A $50.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$
B $100.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$
C $100.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}$ \square
D $50.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}$ \square

| $\mathbf{2}$ | $\mathbf{4} \quad$ In a car airbag, sodium azide $\left(\mathrm{NaN}_{3}\right)$ decomposes to form sodium metal and |
| :--- | :--- | nitrogen gas.

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

The sodium metal then reacts with potassium nitrate to produce more nitrogen gas.

$$
10 \mathrm{Na}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+5 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{K}_{2} \mathrm{O}(\mathrm{~s})
$$

If 2.00 mol of sodium azide react in this way, how many molecules of N_{2} will be formed?
(The Avogadro constant $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$)

A 2.41×10^{24}

B 1.93×10^{24}
C 1.81×10^{24}
D 9.63×10^{23}

Question Marking Guidance	Mark		
\begin{tabular}{\|l	l	l	l
\hline			
\end{tabular}			
10.0	C	1	
11.0	C	1	
12.0	B	1	
13.0	D	1	
14.0	C	1	
15.0	A	1	
16.0	C	1	
17.0	B	1	
18.0	B	1	
19.0	A	1	
20.0	A	1	
21.0	C	1	
22.0	C	1	
23.0	D	1	
24.0	B	1	

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.

| CORRECT METHOD WRONG METHODS $\quad \infty$ | \bullet | \varnothing |
| :--- | :--- | :--- | :--- | :--- | :--- |

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do not use additional sheets for this working.

| 0 | 9 |
| :--- | :--- | Which is the correct crystal structure for the substance named?

A

Substance	Structure
lodine	Simple molecular
Diamond	Ionic
Sodium chloride	Giant covalent
Graphite	Metallic

| 1 | 0 |
| :--- | :--- |\quad Which is the best technique to remove the silver chloride that forms when aqueous solutions of silver nitrate and sodium chloride react?

A Refluxing

B Evaporation
C Filtration
D Distillation

$\mathbf{1}$	$\mathbf{1}$	Which statement about astatine is correct?

A Astatine has a greater electronegativity than bromine
B Astatine is a better oxidising agent than bromine
C Astatine has a greater boiling point than bromine
D Astatine has a greater first ionisation energy than bromine

| $\mathbf{1}$ | $\mathbf{2}$ Which statement about time of flight mass spectrometry is correct? |
| :--- | :--- | :--- |

A The current in the detector is proportional to the ion abundance

B Sample particles gain electrons to form positive ions

C Particles are detected in the order of their kinetic energies

D lons are accelerated by a magnetic field

1	3	$C h l o r i n e ~ e x i s t s ~ a s ~ t w o ~ i s o t o p e s ~$
	Cl and ${ }^{37} \mathrm{Cl}$ in the ratio 3:1	

Which statement about peaks in the mass spectrum of Cl_{2} is correct?

A Peaks at $\mathrm{m} / \mathrm{z}=70$ and 74 in the ratio $3: 1$

B Peaks at $\mathrm{m} / \mathrm{z}=70,72$ and 74 in the ratio 9:6:1

C Peaks at $\mathrm{m} / \mathrm{z}=70,72$ and 74 in the ratio 9:3:1 \square

D Peaks at $\mathrm{m} / \mathrm{z}=70$ and 72 in the ratio $3: 1$ \square

A 4.85 g sample of anhydrous sodium sulfate is dissolved in water and the solution made up to $250 \mathrm{~cm}^{3}$ in a volumetric flask.

What is the concentration in $\mathrm{mol} \mathrm{dm}^{-3}$ of sodium sulfate in the solution?

A 0.0341
B 0.137
C 0.163
D 0.273

| $\mathbf{1}$ | $\mathbf{5}$ Which of these contains the greatest number of atoms? |
| :--- | :--- | :--- |

A 127 mg of iodine
B $1.54 \times 10^{-4} \mathrm{~kg}$ of phosphorus
C 81.0 mg of carbon dioxide
D $1.70 \times 10^{-4} \mathrm{~kg}$ of ammonia

| $\mathbf{1}$ | $\mathbf{6}$ | $25.0 \mathrm{~cm}^{3}$ samples of NaOH solution were taken by pipette from a beaker. These |
| :--- | :--- | :--- | were then titrated with an aqueous solution of ethanoic acid. The concentration of ethanoic acid calculated from the experimental results was found to be lower than the actual value.

Which of these could explain the difference?

A Rinsing the pipette with distilled water before filling with NaOH

B Rinsing the burette with distilled water before filling with ethanoic acid

C Rinsing the walls of the conical flask with distilled water during the titration

D Rinsing the beaker with distilled water before filling with NaOH

A $20.0 \mathrm{~cm}^{3}$ sample of a $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of a metal bromide $\left(\mathrm{MBr}_{\mathrm{n}}\right)$ reacts exactly with $160 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous silver nitrate.

What is the formula of the metal bromide?

A MBr
B MBr_{2}
C MBr_{3}
D MBr_{4}

| 1 | $\mathbf{8} \quad$ Which species has one or more bond angle(s) of $90^{\circ} ?$ |
| :--- | :--- | :--- |

A CH_{4}
B NH_{4}^{+}
C ClF_{4}^{-}
D AlCl_{4}^{-}

1	$\mathbf{9}$	The forward reaction in this equilibrium is endothermic

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Which statement is correct?

A If the total pressure is increased at constant temperature, the \square proportion of COCl_{2} in the equilibrium mixture will decrease

B Use of a catalyst will increase the proportion of COCl_{2} in the equilibrium mixture at constant temperature and pressure

C Reducing the equilibrium concentration of CO will increase the value of the equilibrium constant

D Raising the temperature from 373 K to 473 K will increase the value of the equilibrium constant
\qquad

$\mathbf{2}$	$\mathbf{0} \quad$ Which of these is not a redox reaction?

A $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$ \square
B $\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
C $\mathrm{SnCl}_{2}+\mathrm{HgCl}_{2} \rightarrow \mathrm{Hg}+\mathrm{SnCl}_{4}$ \square
D $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$ \square

2	1	Which of these has the highest first ionisation energy?

A Na
B Al
C Si
D Cl

| $\mathbf{2}$ | $\mathbf{2}$ What is the empirical formula of an oxide of nitrogen that contains 26% nitrogen |
| :--- | :--- | :--- | by mass?

A NO_{2}

B $\mathrm{N}_{2} \mathrm{O}_{3}$ \square
C $\mathrm{N}_{2} \mathrm{O}_{5}$ \square
D $\mathrm{N}_{4} \mathrm{O}_{5}$

2	3

Which species is not produced by a redox reaction between solid sodium iodide and concentrated sulfuric acid?

A $\mathrm{Na}_{2} \mathrm{SO}_{4}$

B $\mathrm{H}_{2} \mathrm{~S}$
C S
D SO_{2}

9	A
10	C
11	C
12	A
13	B
14	B
15	D
16	B
17	B
18	C

19	D

20	B

21	D

22	c

23	A

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.

10 Which row shows the bonding in ammonium chloride?

	Covalent	Dative covalent	Ionic	
A	\checkmark	\mathbf{x}	\mathbf{x}	0
B	\checkmark	\checkmark	\mathbf{x}	0
C	\checkmark	\checkmark	\checkmark	0
D	\mathbf{x}	\mathbf{x}	\checkmark	0

$1 \quad 1$ How many protons are there in 6.0 g of nitrogen gas?
Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

A 1.3×10^{23}
B 9.0×10^{23}

C 1.8×10^{24}

D 3.6×10^{24}

1	2

What is the property?

A Atomic radius \square
B Electronegativity

C First ionisation energy \square
D Melting point \square

| 1 | 3 |
| :--- | :--- | A $30 \mathrm{~cm}^{3}$ sample of nitrogen was reacted with a $60 \mathrm{~cm}^{3}$ sample of fluorine according to the equation

$$
\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{NF}_{3}(\mathrm{~g})
$$

What is the volume of the gas mixture after the reaction, at constant temperature and pressure?

A $20 \mathrm{~cm}^{3}$ \square
B $30 \mathrm{~cm}^{3}$ \square
C $40 \mathrm{~cm}^{3}$
0
D $50 \mathrm{~cm}^{3}$ \square

| 1 | $\mathbf{4}$ | Which substance is used to reduce titanium(IV) chloride in the extraction of titanium |
| :--- | :--- | :--- | metal?

A Magnesium \square
B Manganese \square
C Vanadium \square
D Zinc \square

$\mathbf{1}$	$\mathbf{5}$ Which statement about barium sulfate is correct?

A It is soluble in water at a temperature of $100^{\circ} \mathrm{C}$. \square
B It is used in medicine because it does not dissolve in body fluids.
C It is a pale yellow solid.
D It reacts with acidified barium chloride solution.

16 Which statement is correct about the reaction between concentrated sulfuric acid and solid sodium bromide?

A Bromide ions are reduced.
B Hydrogen bromide and sulfur are formed.
C Sulfuric acid acts as an oxidising agent.
D Bromine and hydrogen sulfide are formed.

$\mathbf{1}$	$\mathbf{7}$	Which compound is used to treat the symptoms of indigestion?

A MgO \square
B $\mathrm{Mg}(\mathrm{OH})_{2}$ \square
C CaO

D $\mathrm{Ca}(\mathrm{OH})_{2}$

1	8	Which element has the highest first ionisation energy?

A Aluminium

B Phosphorus

C Silicon

D Sulfur

$$
0
$$

19 A solution of volume $500 \mathrm{~cm}^{3}$ contains 150 g of ammonia.
What is the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of ammonia in this solution?

A 0.51 \square
B 8.82

C 16.7

D 17.6 \square

Refer to the following information when answering Questions 20, 21, 22, 23 and 24.
A student devised an experiment to find the concentration of sulfuric acid in a sample of battery acid.

- A measuring cylinder was used to transfer $10 \mathrm{~cm}^{3}$ of battery acid to a volumetric flask.
- Distilled water was added to the volumetric flask until the volume reached $250 \mathrm{~cm}^{3}$
- A $25.0 \mathrm{~cm}^{3}$ sample of diluted acid was transferred from the volumetric flask to a conical flask using a pipette.
- A few drops of methyl orange indicator were added to the acid in the conical flask before titrating the acid with sodium hydroxide.
- The titration was repeated five times but concordant results were not obtained. (Note: Methyl orange is red in acid and yellow in alkali.)

20 Which suggestion would improve the chances of obtaining concordant titres?

A Invert the volumetric flask several times after adding the distilled water. \square
B Wash the pipette with distilled water between each titration.
C Add extra drops of indicator to the sample when nearing the end point \square in each titration.

D Use a more concentrated solution of sodium hydroxide in the burette. \square

| 2 | 1 | Which suggestion about rinsing the conical flask between each titration would improve the |
| :--- | :--- | :--- | accuracy of the titrations?

A Rinsing with acid. \square
B Rinsing with alkali.

C Rinsing with water. \square
D No rinsing with any liquid. \square

22 Which suggestion would reduce the overall measurement uncertainty in the titration?

A Use less concentrated alkali in the burette.
B Use phenolphthalein indicator instead of methyl orange. \square
C Use smaller samples of the diluted acid in each titration.
D Begin each titration with the burette filled to the $0.00 \mathrm{~cm}^{3}$ mark.

23 Which of these is important in ensuring that the student's experiment is safe?

A Do the titration in a fume cupboard.
B Wear gloves when measuring out the battery acid.
C Wash hands before doing the titration.
D Carry the burette horizontally when collecting the apparatus. \square

24 Which colour change is observed at the end point in each titration?

A Yellow to red
B Red to orange

C Yellow to orange

D Red to yellow \square

END OF QUESTIONS

10	C

11	C

12	D
13 D 14 A 15 B	

16	C

17	B

18	B

Question	Marking Guidance

19	D
 20 A	

21	C

22	A

23	B
24 B	

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.
$0 \quad 9$ Which sample, measured at room temperature and pressure, contains the greatest number of the stated particles?

A 1 g of hydrogen molecules

B 1 g of helium atoms
C $1 \mathrm{dm}^{3}$ of hydrogen molecules

D $1 \mathrm{dm}^{3}$ of helium atoms \square

$\mathbf{1}$	$\mathbf{0}$	5.0 g of an oxide of molybdenum contain 4.0 g of molybdenum..$~$

What is the empirical formula of this oxide?

A MoO_{2}

B $\mathrm{Mo}_{4} \mathrm{O}_{5}$

C $\mathrm{Mo}_{2} \mathrm{O}_{3}$ \square
D $\mathrm{Mo}_{3} \mathrm{O}_{2}$ \square

Which equation represents the reaction that has a standard enthalpy change equal to the standard enthalpy of formation for barium chloride?
$\mathrm{ABa}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$
B $\mathrm{Ba}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$
C $\mathrm{Ba}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$ \square
D $\mathrm{Ba}^{2+}(\mathrm{s})+2 \mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$

1	5	Which equation does not represent a redox reaction?

A Mg $+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
$\mathrm{B} \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ \square
C $\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$ \square
D CuO $+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ \square

16 Which property would you expect the element radium, Ra, to possess?

A It forms a soluble sulfate.

B It does not react with water.
C It is a good conductor of electricity.
D It forms a covalent fluoride.

| 2 | $\mathbf{0}$ Some fuel in a spirit burner is burned, and the heat produced is used to heat a |
| :--- | :--- | :--- | container of water.

In this experiment:
The mass of water heated $=m \mathrm{~g}$
The temperature rise $=y^{\circ} \mathrm{C}$
The specific heat capacity of water $=c \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$
What is the amount of heat energy absorbed by the water?

A moy
B $m c(y+273)$ \square
C $y / m c$
D $(y+273) / m c$ \square

| 2 | 1 |
| :--- | :--- | The equation below represents the complete combustion of butane.

$$
\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+6 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$20 \mathrm{~cm}^{3}$ of butane are completely burned in $0.20 \mathrm{dm}^{3}$ of oxygen. Which statement is correct?

All volumes are measured at the same temperature and pressure.

A $40 \mathrm{~cm}^{3}$ of carbon dioxide are formed
B $0.065 \mathrm{dm}^{3}$ of oxygen react \square
C $70 \mathrm{~cm}^{3}$ of oxygen remain
D $0.50 \mathrm{dm}^{3}$ of steam are formed

$\mathbf{2}$	$\mathbf{2}$ Which statement is correct about reactions involving halide ions?

A Sodium chloride forms chlorine when added to concentrated sulfuric acid.

B Sodium chloride forms chlorine when added to bromine.
C Sodium bromide forms bromine when added to concentrated sulfuric acid.
\square
D Sodium bromide forms bromine when added to iodine.

| 2 | 3 |
| :--- | :--- | What is the percentage yield when 20 g of aluminium are produced from 50 g of aluminium oxide?

$$
2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}
$$

A 76%
B 40%

C 33\% \square
D 19\% \square

END OF QUESTIONS

Question	Marking Guidance	Mark	Comments

9	A	1	
10	C	1	
11	A	1	
12	D	1	
13	C	1	
14	C	1	
15	D	1	
16	C	1	
17	C	1	
18	A	1	
19	A	1	
20	A	1	
21	C	1	
22	C	1	
23	A	1	

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD WRONG METHODS $\quad \infty \quad \odot \quad \not \square$
If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do not use additional sheets for this working.

| 0 | 9 |
| :--- | :--- | Which atom has the smallest number of neutrons?

A ${ }^{3} \mathrm{H}$
0
B ${ }^{4} \mathrm{He}$ \square
C ${ }^{5} \mathrm{He}$
D ${ }^{4} \mathrm{Li}$
o

| $\mathbf{0}$ Which species contains bonds that have different polarities? |
| :--- | :--- |

A NH_{4}^{+} \square
B COl 4 \square
C $\mathrm{CH}_{3} \mathrm{Cl}$
D $\mathrm{H}_{3} \mathrm{O}^{+}$

```
    O
```


$\mathbf{1} \mathbf{7}$	Which property increases down Group 7?	
	A ability to oxidise a given reducing agent	$\boxed{0}$
	B boiling point	\boxed{o}
	C electronegativity	\boxed{o}
	D first ionisation energy	
		\square

$\mathbf{1}$	$\mathbf{8}$ Which of these elements has the highest melting point?

A Argon 0
B Chlorine 0
C Silicon 0
D Sulfur \square

| 1 | 9 |
| :--- | :--- | Which statement is not always correct for a reaction at equilibrium?

$$
\text { reactants } \rightleftharpoons \text { products }
$$

A The concentrations of the reactants and products are equal. \square
B The equilibrium can be achieved starting from the reactants. \square
C The equilibrium can be achieved starting from the products. \square
D The rate of the forward reaction is equal to the rate of the \square

$$
\begin{array}{cl}
\mathrm{Fe}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{FeO}(\mathrm{~s}) & \Delta H=-272 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
2 \mathrm{Fe}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) & \Delta H=-822 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

What is the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction?

$$
2 \mathrm{FeO}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

A +550
B -278
C - 1094
D - 1372

A $\mathrm{Cl}_{2} \mathrm{O}$

Turn over for the next question

A $\mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{KBr}(\mathrm{aq})$

C $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{KCl}(\mathrm{aq})$

A CF_{4}

C CO_{2}

END OF QUESTIONS

Question	Marking Guidance	Mark	Comments

9	D	1	${ }^{4} \mathrm{Li}$
10	C	1	$\mathrm{CH}_{3} \mathrm{Cl}$
11	B	1	NH_{3}
12	D	1	$\mathrm{Li}(\mathrm{s})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{LiF}(\mathrm{s})$
13	A	1	1
14	B	1	$1 s^{2} 2 s^{2} 2 p^{4}$
15	C	1	$\mathrm{Be}^{2+} \mathrm{Li}^{+} \mathrm{F}^{-} \mathrm{O}^{2-}$
16	D	1	$\mathrm{NH}_{4} \mathrm{Cl}$
17	B	1	boiling point
18	C	1	Silicon
19	A	1	The concentrations of the reactants and products are equal.
20	B	1	-278
21	A	1	$\mathrm{Cl}_{2} \mathrm{O}$
22	D	1	$\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq})$
23	D	1	$\mathrm{Cl}_{2} \mathrm{O}$

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD WRONG METHODS $\quad \infty$ © $\quad \odot \quad \nless$
If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.

| 1 | 1 |
| :--- | :--- | In a time of flight mass spectrometer, molecule X is ionised using electrospray ionisation.

What is the equation for this ionisation?

A $X(I)+\mathrm{e}^{-} \rightarrow \mathrm{X}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$ \square
B $\mathrm{X}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{X}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$ \square
C $\mathrm{X}(\mathrm{I})+\mathrm{H}^{+} \rightarrow \mathrm{XH}^{+}(\mathrm{g})$ \square
D $\mathrm{X}(\mathrm{g})+\mathrm{H}^{+} \rightarrow \mathrm{XH}^{+}(\mathrm{g})$ \square

| 1 | 2 |
| :--- | :--- | What is the electron configuration of V^{2+} in the ground state?

A $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$ \square
B $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1} 4 s^{2}$ \square
C $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$ \square
D $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2}$
0

A KClO_{4}

\square
\square

A Antimony \square
B Molybdenum \square
C Strontium 0

D Uranium
\square
B Silicon
\square
0

A $\mathrm{NaF}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq})$ \square
B $\mathrm{NaCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$
C $\mathrm{NaBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq})$
\square

A NaCl

0

A ${ }_{16}^{33} \mathrm{P}$
0
B ${ }_{16}^{34} \mathrm{P}$ \square
\square
\square

A In agriculture to act as a fertiliser \square
B In agriculture to neutralise acidic soil
\square
D In medicine as an antacid to treat indigestion
\square
\square0

D O^{2-}

END OF QUESTIONS

Question	Marking Guidance	Mark	Comments
11	D	1	$\mathrm{X}(\mathrm{g})+\mathrm{H}^{+} \rightarrow \mathrm{XH}^{+}(\mathrm{g})$
12	A	1	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$
13	B	1	CH_{4}
14	C	1	XeF_{4}
15	A	1	H-O
16	C	1	ClO_{2}
17	B	1	Molybdenum
18	B	1	Silicon
19	D	1	$\mathrm{Nal}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$
20	A	1	NaCl
21	D	1	${ }_{16}^{34} \mathrm{~S}$
22	C	1	In medicine to produce an X-ray image
23	D	1	O^{2-}
24	D	1	Selenium
25	C	1	Silicon

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD WRONG METHODS $\quad \infty$ © $\quad \odot \quad \nless$
If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.

| 1 | 1 |
| :--- | :--- | In a time of flight mass spectrometer, molecule X is ionised using electrospray ionisation.

What is the equation for this ionisation?

A $X(I)+\mathrm{e}^{-} \rightarrow \mathrm{X}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$ \square
B $\mathrm{X}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{X}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$ \square
C $\mathrm{X}(\mathrm{I})+\mathrm{H}^{+} \rightarrow \mathrm{XH}^{+}(\mathrm{g})$ \square
D $\mathrm{X}(\mathrm{g})+\mathrm{H}^{+} \rightarrow \mathrm{XH}^{+}(\mathrm{g})$ \square

| 1 | 2 |
| :--- | :--- | What is the electron configuration of V^{2+} in the ground state?

A $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$ \square
B $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1} 4 s^{2}$ \square
C $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$ \square
D $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2}$
0

A KClO_{4}

\square
\square

A Antimony \square
B Molybdenum \square
C Strontium 0

D Uranium
\square
B Silicon
\square
0

A $\mathrm{NaF}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq})$ \square
B $\mathrm{NaCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$
C $\mathrm{NaBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq})$
\square

A NaCl

0

A ${ }_{16}^{33} \mathrm{P}$
0
B ${ }_{16}^{34} \mathrm{P}$ \square
\square
\square

A In agriculture to act as a fertiliser \square
B In agriculture to neutralise acidic soil
\square
D In medicine as an antacid to treat indigestion
\square
\square0

D O^{2-}

END OF QUESTIONS

Question	Marking Guidance	Mark	Comments
11	D	1	$\mathrm{X}(\mathrm{g})+\mathrm{H}^{+} \rightarrow \mathrm{XH}^{+}(\mathrm{g})$
12	A	1	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$
13	B	1	CH_{4}
14	C	1	XeF_{4}
15	A	1	H-O
16	C	1	ClO_{2}
17	B	1	Molybdenum
18	B	1	Silicon
19	D	1	$\mathrm{Nal}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$
20	A	1	NaCl
21	D	1	${ }_{16}^{34} \mathrm{~S}$
22	C	1	In medicine to produce an X-ray image
23	D	1	O^{2-}
24	D	1	Selenium
25	C	1	Silicon

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD WRONG METHODS $\quad \infty \quad \odot \quad \not \square$
If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.

| 0 | 9 |
| :--- | :--- | Which atom has two more protons and two more neutrons than ${ }_{24}^{52} \mathrm{Cr}$?

A ${ }_{26}^{54} \mathrm{Cr} \quad 0$
B ${ }_{26}^{56} \mathrm{Cr} \quad 0$
C ${ }_{26}^{54} \mathrm{Fe} \quad 0$
D ${ }_{26}^{56} \mathrm{Fe} \quad 0$

$\mathbf{1}$	$\mathbf{0}$

Which atom contains only two unpaired electrons?

A Helium \square
B Beryllium
C Oxygen \square
D Iron \qquad

| 1 | 1 |
| :--- | :--- | The first six ionisation energies, in $\mathrm{kJ} \mathrm{mol}^{-1}$, of an element are:

1090, 2350, 4610, 6220, 37800,47000
What is the element?

A Boron	0
B Carbon	0
C Nitrogen	0
D Oxygen	0

$12 \mathbf{2}$ In which pair is the first ionisation energy of atom \mathbf{Y} greater than that of atom \mathbf{X} ?

	Electron configuration of atom \mathbf{X}	Electron configuration of atom \mathbf{Y}	
A	$1 s^{2} 2 s^{2}$	$1 s^{2} 2 s^{2} 2 p^{1}$	0
B	$1 s^{2} 2 s^{2} 2 p^{3}$	$1 s^{2} 2 s^{2} 2 p^{4}$	0
C	$1 s^{2} 2 s^{2} 2 p^{5}$	$1 s^{2} 2 s^{2} 2 p^{6}$	0
D	$1 s^{2} 2 s^{2} 2 p^{6}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$	O

$\mathbf{1}$	$\mathbf{3}$ Which statement about isotopes of an element is not correct?

A They have the same chemical properties.
B They have the same number of electrons in ions of the same charge.
\square
C They have the same number of neutrons. \square
D They have the same number of protons. \square

$\mathbf{1}$	$\mathbf{4}$

What is the empirical formula of this oxide?
$\mathrm{A} \mathrm{MoO}_{2} \quad 0$
B MoO_{5}

C $\mathrm{Mo}_{2} \mathrm{O}_{3}$ \square
D $\mathrm{Mo}_{3} \mathrm{O}_{2}$ \square

1	5	The equation for a reaction is

$$
\mathrm{AsH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{AsH}_{4}^{+}
$$

What type of interaction forms in this reaction?

A Co-ordinate bond

B Dipole-dipole force

C Hydrogen bond ○

D lonic bond \square

| 1 | 6 |
| :--- | :--- | Which is a correct trend down Group 7 from fluorine to iodine?

A The boiling point of the element decreases.
B The oxidising ability of the element decreases. \square
C The electronegativity of the atom increases. \square
D The first ionisation energy of the atom increases.

A S^{2-}
\square
C K^{+}
\square

Chloride ions reduce concentrated sulfuric acid to form
\square
B Bromide ions reduce concentrated sulfuric acid to form sulfur.
\square

1	9

A OF_{2}

B $\mathrm{H}_{2} \mathrm{O}$ \square

C O_{2} \square
D $\mathrm{H}_{2} \mathrm{O}_{2}$ \square

$\mathbf{2}$	$\mathbf{0}$	Which block in the Pe
	A d block	0
	B f block	0
	C p block	0
	D s block	0

21 Which species is not a possible product of the reactions between chlorine and water? Which species is not a possible product of the reactions between chlorine and water?
[1 mark]

A Cl- \square
B ClO^{-}

C O_{2}

D OH^{-} \square

| 2 | 2 |
| :--- | :--- | Which statement is correct?

A Magnesium reacts with steam to give magnesium oxide as one of the products. \square
B Magnesium acts as an oxidising agent in the extraction of titanium. \square
C Magnesium has a lower melting point than sodium.
D Magnesium hydroxide is very soluble in water. \square
,

2	3	Which is not responsible for conducting electricity?

A The sodium ions in molten sodium chloride
B The electrons between layers of carbon atoms in graphite
C The bonding electrons in a metal
D The lone pair electrons in liquid water molecules

END OF QUESTIONS

