A' Level Chemistry Year 1

Unit 7: Group VII

Summer Examination Revision Pack

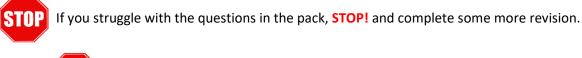
The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

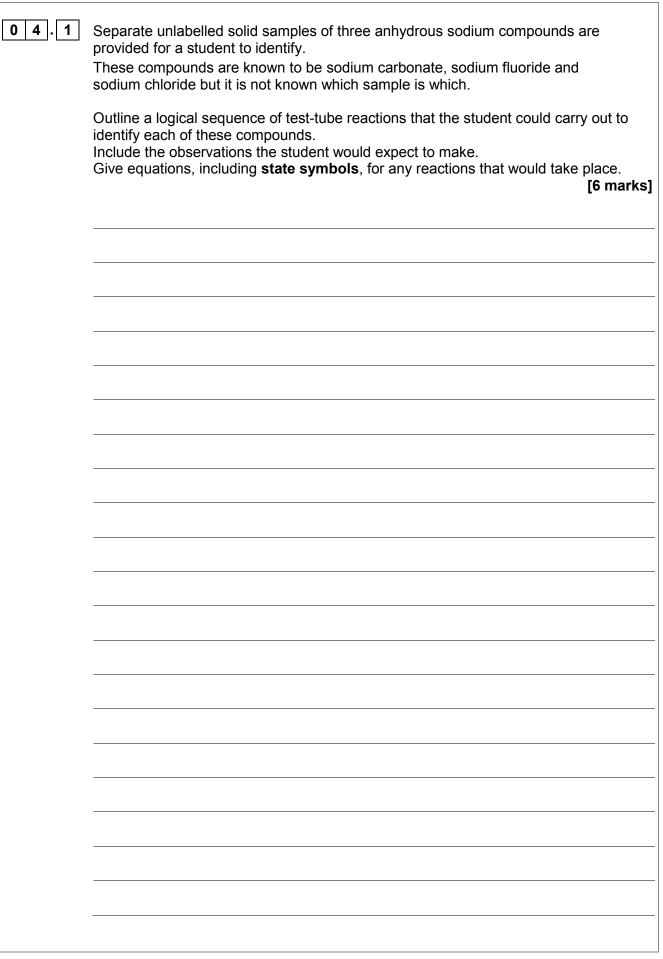
Online Forms Take Time to Answer Use Paper & Calculator Work It Out Review Missed Marks


Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.


If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

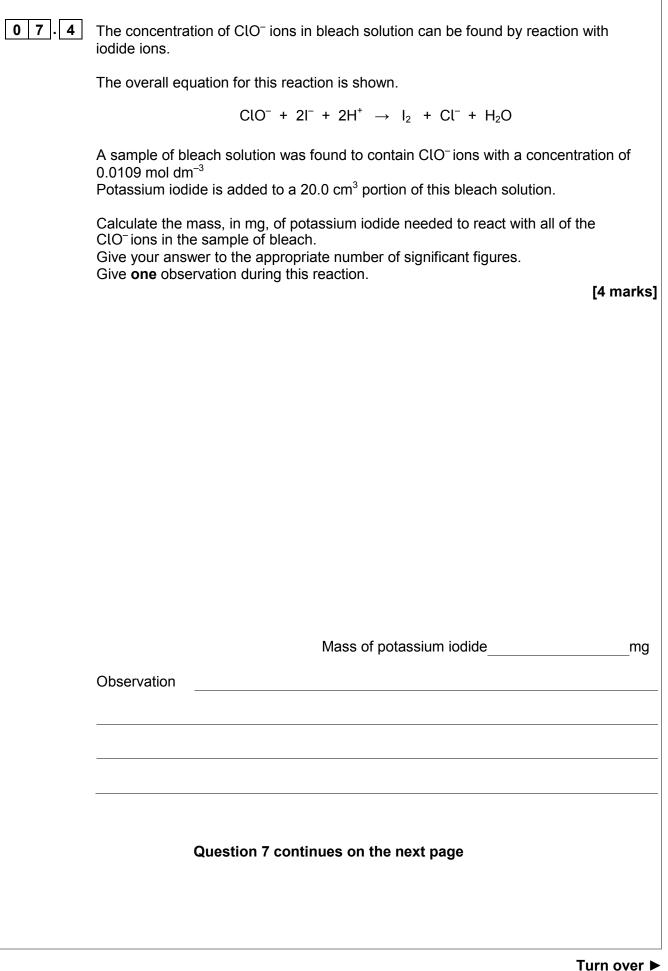
8	A student oxidised a solution of hydrochloric acid with a few drops of sodiu chlorate(I) solution. The reaction mixture effervesced and turned pale gree gas formed bleached universal indicator paper.	
08.1	Write a half-equation for the oxidation of chloride ions.	
		[1 mark]
08.2	Write a half-equation for the reduction of chlorate(I) ions to chlorine in acia conditions.	dic [1 mark]
08.3	Write an overall equation for the redox reaction of chlorate(I) ions with hydrochloric acid.	[1 mark]
08.4	A solution of sodium chlorate(I) was added to a colourless solution of pota iodide. Suggest what is observed.	assium
	Explain the reaction that leads to this observation.	3 marks]

Question	Marking Guidance	Mark	Comments CIO ⁻
08.1	$2CI^{-} \rightarrow CI_2 + 2e^{(-)}$	1	Allow $2CI^{-} - 2e^{(-)} \rightarrow CI_2$ Alow correct equation forming CIO ⁻ but not CI ⁺
08.2	$2\text{CIO}^- + 4\text{H}^+ + 2\text{e}^- \rightarrow \text{CI}_2 + 2\text{H}_2\text{O}$	1	Allow HCIO in correctly balanced equation

08.3	$CIO^{-} + CI^{-} + 2H^{+} \rightarrow CI_{2} + H_{2}O$	1	allow HCIO + HCI + \rightarrow CI ₂ + H ₂ O
08.4	Goes brown (or shades of brown) Due to iodine or I₃ [¯] Because I [−] oxidised	1 1 1	Allow black ppt/solid but NOT black solution or purple Correct ½ equation scores M2 and M3

Turn over for the next question

9


Turn over ►

04.1 LOR Mark Scheme

Marks awarded for this answer will be determined by the quality of written communication as well as the	Indicative Chemistry Content
standard of the scientific response. Examiners should apply a 'best-fit' approach to the marking.	Stage 1 Suggested tests
Additional tests limits to lower mark within a level. This would include, for example, adding silver nitrate to the already identified sodium carbonate.	1a Add named acid to all 3
Use of hydrochloric acid with silver nitrate also limits to lower mark within a level as this would not be a logical sequence/method that would work.	1b Add water / make into a solution
Level 3 (5—6 marks)	1c Add AgNO ₃
All stages are covered and each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3 to	Ignore addition of NH_3 / Ignore additional test for CO_2 produced
identify all three compounds in a logical sequence with results and equations for all compounds stated.	Stage 2 Expected observations - conclusions
Covers 2 tests with matching observations, conclusions and equations	$2a Na_2CO_3$ will fizz with acid
Level 2 (3—4 marks)	2b NaCl gives white ppt with AgNO₃
All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR two stages are covered and are generally correct and virtually complete.	2c NaF shows no (visible) change / no ppt
Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and	Additional incorrect observations loses point
3. Covers 2 compounds	Stage 3 Equations – state symbols must match method
Isolated tests on named compounds – max LEVEL 2	
Level 1 (1—2 marks)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete.	$3b \text{ AgNO}_3 + \text{ NaCl} \rightarrow \text{ AgCl} + \text{ NaNO}_3$ or ionic
Answer includes isolated statements but these are not presented in a logical order.	3c correct state symbols

0 7	Chlorine is used to decrease the numbers of microorganisms in water.
	When chlorine is added to water, there is a redox reaction, as shown by the equation
	$Cl_2 + H_2O \Rightarrow HClO + HCl$
07.1	Deduce the oxidation state of chlorine in HClO and the oxidation state of chlorine in HCl HCl [1 mark]
	Oxidation state of chlorine in HClO
	Oxidation state of chlorine in HCl
07.2	Give two half-equations to show the oxidation and reduction processes that occur in this redox reaction. [2 marks]
	Oxidation half-equation
	Reduction half-equation
07.3	Chlorine is reacted with cold, aqueous sodium hydroxide in the manufacture of bleach.
	Give an equation for this reaction between chlorine and sodium hydroxide. [1 mark]

IB/M/Jun18/7404/1

0 7.5

Potassium chlorate(VII), KClO₄, is used in fireworks. When potassium chlorate(VII) decomposes, it produces potassium chloride and oxygen.

Give an equation for the decomposition of potassium chlorate(VII). Use the data in **Table 3** to calculate the enthalpy change for this reaction.

[2 marks]

Table 3	Та	ble	3
---------	----	-----	---

Substance	$\Delta_{\rm f} H$ / kJ mol ⁻¹
KClO ₄ (s)	-434
KCl(s)	-436

Equation

Enthalpy change_____kJ mol⁻¹

Qu		Marking	g Guidance	Additional Comments	Mark
7.1	Two correc	t Cl ox states: HClO =	+1 HCl = -1		1
7.2	Oxidation: $Cl_2 + 2H_2O$	→ 2HClO + 2H ⁺ + 2e ⁻		Accept - 2e ⁻ on the other side Allow $Cl_2 + 2H_2O \rightarrow 2ClO^- + 2e^-$	1
	Reduction: Cl ₂ + 2H ⁺ +	2e ⁻ → 2HCl		Allow $Cl_2 + 2e^- \rightarrow 2Cl^-$ If both equations correct but incorrect order, allow 1 Ignore state symbols	1
7.3	2NaOH + C	Cl₂ → NaCl + NaClO + I	H ₂ O	Allow $2OH^{-} + Cl_{2} \rightarrow Cl^{-} + ClO^{-} + H_{2}O$ Allow NaOCl Ignore state symbols	1
7.4	mol ClO ⁻	= conc × vol = <u>0.000218</u> / <u>2.18 x</u>			1
	mol Kl	= 0.000218 × 2	= 0.000436 mol	M2 = M1 x2 If incorrect ratio, M2 & M3 = 0	1
	mass KI	= $M_r \times mol$ = 0.072376 g = 72.4 (mg)	= 166.0 × 0.000436	M3 = M1 x 2 x 166.0 x 1000 Must be to <u>3 sig figs</u>	1
		<u>ppt</u> appears/forms (in a ss solution) turns browr		Not purple. Not red. Not brown ppt/solid Ignore grey.	1

7.5	$\text{KClO}_4 \rightarrow \text{KCl} + 2\text{O}_2$	Ignore state symbols Allow multiples	1
	$\Delta H = -436434 = -2 \text{ kJ mol}^{-1}$	Must be negative Mark independently Allow consequential for multiples	1

		Do not write outside the
0 8	The following pairs of compounds, each in aqueous solution, can be distinguished by simple test-tube reactions.	box
	Give a reagent, or combination of reagents, that can be added to the solutions in each pair to distinguish between them in a single reaction.	
	State what is observed in each case.	
0 8 1	NaCl(aq) and BaCl ₂ (aq) [3 marks]	
	Reagent	
	Observation with NaCl	
	Observation with BaCl ₂	
08.2	NaCl(aq) and Na ₂ CO ₃ (aq) [3 marks]	
	Reagent	
	Observation with NaCl	
	Observation with Na ₂ CO ₃	6
	Turn over for Section B	
	Turne even b	

Question	Marking guidance	Additional Comments/Guidelines	Mark
08.1	Reagent: H_2SO_4 / Na_2SO_4 / any soluble sulfate Observation with NaCl: no (visible) change Observation with BaCl ₂ : white ppt / white solid formed	If reagent incorrect then cannot score observations (ignore conc for H ₂ SO ₄) If reagent incomplete (e.g. SO ₄ ²⁻), then lose M1 but mark on Allow "no reaction","nvc","no change"; Do not allow "nothing","no observation" and observations by omission (e.g. no ppt)	3

08.2	Reagent: H ₂ SO ₄ / HCl / HNO ₃ Observation with NaCl: no (visible) change Observation with Na ₂ CO ₃ : effervescence/bubbles/fizzing OR Reagent: <u>acidified</u> AgNO ₃	If reagent incorrect then CE=0 If reagent incomplete (e.g. H*), then lose M1 but mark on.If reagent is acid and limewater, lose M1, but mark on.Allow "no reaction"; Do not allow "nothing"Allow (CO2) gas producedAllow "no reaction", "nvc", "no change"; Do not allow "nothing", "no observation" and observations by omission (e.g. no fizzing)If reagent = AgNO3 (not acidified) – do not allow reagent mark, but allow white ppt for observation with NaCl and white ppt for observation with Na2CO3 (do not allow nvc for Na2CO3)Allow in a HCl with AgNO3, then do not allow
	Observation with NaCl: white ppt / white solid formed Observation with Na ₂ CO ₃ : effervescence/bubbles/fizzing	reagent mark, but mark on. Ignore references to ppt for observation with Na ₂ CO ₃ Allow (CO ₂) gas produced Allow "no reaction", "nvc", "no change"; Do not allow "nothing", "no observation" and observations by omission (e.g. no ppt / no fizzing) Allow alternative reagents (e.g. BaCl ₂) that would distinguish in a single reaction.

0 7	This question is about Group 7 elements and their compounds.	Do not write outside the box
0 7.1	Chlorine is used to treat water even though it is toxic to humans.	
	Give one reason why water is treated with chlorine. Explain why chlorine is added to water even though it is toxic.	
	Give an equation for the reaction of chlorine with cold water.	
	[3 marks]	
	Reason	
	Explanation	
	Equation	

Do not write outside the 0 7 . 2 Solid sodium iodide reacts with concentrated sulfuric acid to form iodine and sulfur in a redox reaction. Give a half-equation to show the conversion of iodide ions to iodine. Give a half-equation to show the conversion of sulfuric acid to sulfur. Give an overall equation for this redox reaction. Identify one other sulfur-containing reduction product formed when solid sodium iodide reacts with concentrated sulfuric acid. [4 marks] Half-equation for the conversion of iodide ions to iodine Half-equation for the conversion of sulfuric acid to sulfur **Overall equation** Other sulfur-containing reduction product Question 7 continues on the next page

Turn over ►

box

Question	Marking guidance	Additional Comments/Guidelines	Mark
	Reason: sterilise water / disinfect water / kill bacteria / kill microorganisms / kill microbes		1
07.1	Explanation: health benefit outweighs risk / only used in small quantities/low concentrations		1
	Equation: $Cl_2 + H_2O \rightleftharpoons HCl + HClO$	$2 \text{ Cl}_2 + 2 \text{ H}_2\text{O} \rightarrow 4 \text{ HCl} + \text{O}_2$	1
	$2l^- \rightarrow l_2 + 2e$		1
07.0	$H_2SO_4 + 6H^+ + 6e \rightarrow S + 4H_2O$	Allow S ₈	1
07.2	$6H^{+}+6I^{-}+H_2SO_4\to 3I_2+S+4H_2O$	Allow correct equations using 8H ⁺ + SO ₄ ²⁻	1
	SO ₂ or H ₂ S	Mark independently	1

		number of test-tube reactions o	
	Table 2 shows the stud	ent's observations.	
		Table 2	
	Test 1	Test 2	Test 3
	Add H ₂ SO ₄ (aq)	Warm with NaOH(aq)	Add acidified AgNO₃(aq)
Α	white precipitate	no visible change	no visible change
в	effervescence	a gas is formed that turns damp red litmus blue	effervescence
С	no visible change	no visible change	off-white precipitate
i . 1		the positive ion in solution A . equation for the formation of the	e white precipitate in [2 mark
4.1	Give the simplest ionic Test 1 for solution A . Identity of positive ion in	equation for the formation of the	
4.1 4.2	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation	equation for the formation of the	[2 mark
	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation	equation for the formation of the	[2 mark
	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation Different gases are form Suggest the identity of the	equation for the formation of the	Test 1 and in Test 2 .
	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation Different gases are form Suggest the identity of a Give the simplest ionic	equation for the formation of the	[2 mark Fest 1 and in Test 2. e gas in Test 2. [2 mark
	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation Different gases are form Suggest the identity of Give the simplest ionic Gas formed in Test 1 _	equation for the formation of the	[2 mark 'est 1 and in Test 2. e gas in Test 2. [2 mark

04.3	The student thinks that solution ${f C}$ contains either chloride ions or bromide ions.	Do not write outside the box
	Describe a further test, or tests, to show whether solution C contains chloride or bromide ions.	
	[3 marks]	
		[]
		7
	Turn over for the next question	
	Turn over ►	

Question	Marking guidance	Additional Comments/Guidelines	Mark
	Ba ²⁺	Accept Ca ²⁺ / Sr ²⁺ / Pb ²⁺	1
04.1	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$	Ignore state symbols Conseq on Ca ²⁺ / Sr ²⁺ / Pb ²⁺ for M1	1

Question	Marking guidance	Additional Comments/Guidelines	Mark
04.2	Gas in Test 1: CO ₂ Gas in Test 2: NH ₃	Both gases needed for mark Allow SO ₂ as correct gas for Test 1	1
	$NH_4^+(aq) + OH^-(aq) \rightarrow NH_3(g) + H_2O(I)$	Ignore state symbols	I

Question	Marking guidance	Additional Comments/Guidelines	Mark
04.3	M1: Add <u>dilute</u> ammonia solution M2: If the precipitate dissolves chloride ions are present M3: If the precipitate does not dissolve then bromide ions are present	Allow M3 if concentrated ammonia is added after dilute ammonia and the precipitate then dissolves to identify presence of bromide ions. Accept alternative Add chlorine If there is no visible change chloride ions are present If an orange-brown solution forms then bromide ions are present	1 1 1

0 5	This question is about chlorine.	Do not write outside the box
0 5 1	Chlorine has a low boiling point because the forces between the molecules are weak.	
	Explain how these forces arise between molecules of chlorine. [3 marks]	
0 5.2	Give an equation for the reaction of chlorine with water.	
	Give a reason why chlorine is added to drinking water.	
	[2 marks] Equation	
	Reason	
0 5.3	Chlorine reacts with cold, aqueous sodium hydroxide in the manufacture of bleach.	
	Give an equation for this reaction.	
	[1 mark]	
		6

MARK SCHEME – AS CHEMISTRY – 7404/1 – JUNE 2021

Question	Marking guidance	Additional Comments/Guidelines	Mark
	(Random) movement of electrons in one molecule (creates a dipole) / a (temporary) dipole is formed in one molecule / an imbalance in electron density in one molecule		1
05.1	Induces a dipole in a neighbouring molecule.		1
	(These) temporary dipoles attract / temporary attraction between $\delta \text{+}$ and $\delta \text{-}$		1

Question	Marking guidance	Additional Comments/Guidelines	Mark
05.2	$Cl_2 + H_2O \rightleftharpoons HCl + HClO / 2 Cl_2 + 2 H_2O \rightarrow 4 HCl + O_2$		1
05.2	Kills bacteria / kills microorganisms / kills microbes / kills pathogens	Allow sterilise water / disinfect water	I

Question	Marking guidance	Additional Comments/Guidelines	Mark
05.3	Cl_2 + 2 NaOH \rightarrow NaCl + NaClO + H ₂ O		1

0 6	lodide ions can be oxidised to iodine using oxidising agents such as		o not write utside the box
	iodate(V) ions (IO ₃ ⁻) and concentrated sulfuric acid.		
06.1	State, in terms of electrons, the meaning of the term oxidising agent. [1	mark]	
06.2	In acidic solution, IO_3^- ions oxidise iodide ions to iodine. $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$ Give a half-equation for the oxidation of iodide ions to iodine. Deduce the half-equation to show the reduction process in this reaction. [2 m Oxidation half-equation	narks]	
	Reduction half-equation		
06.3	When iodide ions are oxidised using concentrated sulfuric acid, sulfur dioxide, a yellow solid and a foul-smelling gas are all formed. Give an equation to show the reaction between iodide ions and concentrated sulfuric acid to form the yellow solid. Identify the foul-smelling gas. [2 m	narks]	
	Equation		
	Identity of foul-smelling gas		5

Question	Marking guidance	Additional Comments/Guidelines	Mark
06.1	Electron acceptor / gains electrons	Do not allow electron pair acceptor / gain of electrons	1 (AO1)

Question	Marking guidance	Additional Comments/Guidelines	Mark
06.0	Oxidation half equation $2 \vdash \rightarrow l_2 + 2 e^-$	Allow multiples.	1
06.2	Reduction half equation 2 IO ₃ ⁻ + 12 H ⁺ + 10 e ⁻ \rightarrow l ₂ + 6 H ₂ O	Award 1 mark if the two equations are shown transposed	1 (2 x AO2)

Question	Marking guidance	Additional Comments/Guidelines	Mark
00.0	Equation: $6 \vdash + 6 H^+ + H_2SO_4 \rightarrow S + 3 I_2 + 4 H_2O$	Allow 6HI Allow 6 \vdash + 8H ⁺ + SO ₄ ²⁻	1
06.3	Foul smelling gas – H ₂ S / hydrogen sulphide		1 (2 x AO1)

Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas Test	Table 4 Solution Test 1 Test 2 Add Na ₂ CO ₃ (s) Add acidified AgNO ₃ (aq) A Effervescence No visible change B Effervescence White precipitate C No visible change No visible change D No visible change Very pale yellow precipitate O 8.1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas	0 8	A student does	s two test-tube reactior	ns on four colourless solutions (A ,	c	Do noi outsia bc
Solution Test 1 Test 2 Add Na ₂ CO ₃ (s) Add acidified AgNO ₃ (aq) A Effervescence No visible change B Effervescence White precipitate C No visible change No visible change D No visible change Very pale yellow precipitate D No visible change Very pale yellow precipitate D Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. Identity of gas	Solution Test 1 Test 2 Add Na2CO3(s) Add acidified AgNO3(aq) A Effervescence No visible change B Effervescence White precipitate C No visible change No visible change D No visible change Very pale yellow precipitate O 8.1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas		Table 4 shows	the student's observa	tions.		
 Add Na₂CO₃(s) Add acidified AgNO₃(aq) A Effervescence No visible change B Effervescence White precipitate C No visible change No visible change D No visible change Very pale yellow precipitate 0 8.1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas	Add Na2CO3(s) Add acidified AgNO3(aq) A Effervescence No visible change B Effervescence White precipitate C No visible change No visible change D No visible change Very pale yellow precipitate Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas			Tab	le 4		
A Effervescence No visible change B Effervescence White precipitate C No visible change No visible change D No visible change Very pale yellow precipitate D 8.1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas	A Effervescence No visible change B Effervescence White precipitate C No visible change No visible change D No visible change Very pale yellow precipitate 0 8.1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas		Solution	Test 1	Test 2		
B Effervescence White precipitate C No visible change No visible change D No visible change Very pale yellow precipitate D 8.1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas	B Effervescence White precipitate C No visible change No visible change D No visible change Very pale yellow precipitate 0 8 1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas			Add Na ₂ CO ₃ (s)	Add acidified AgNO ₃ (aq)		
C No visible change No visible change D No visible change Very pale yellow precipitate D 8.1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas	C No visible change No visible change D No visible change Very pale yellow precipitate D 8.1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas		Α	Effervescence	No visible change		
D No visible change Very pale yellow precipitate D No visible change Very pale yellow precipitate D Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. Identity of gas	D No visible change Very pale yellow precipitate D No visible change Very pale yellow precipitate D Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas [2 marks] Identity of gas		В	Effervescence	White precipitate		
 1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas	 D 8.1 Identify the gas formed in Test 1. Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas Test D 8.2 Explain how the observations from Test 1 and Test 2 can be used to show that solution B contains hydrochloric acid. 		С	No visible change	No visible change		
Describe a further test to confirm the identity of this gas. [2 marks] [dentity of gas Test Test Explain how the observations from Test 1 and Test 2 can be used to show that solution B contains hydrochloric acid.	Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas Test Explain how the observations from Test 1 and Test 2 can be used to show that solution B contains hydrochloric acid.		D	No visible change	Very pale yellow precipitate		
Describe a further test to confirm the identity of this gas. [2 marks] [dentity of gas Test Test Explain how the observations from Test 1 and Test 2 can be used to show that solution B contains hydrochloric acid.	Describe a further test to confirm the identity of this gas. [2 marks] Identity of gas Test Explain how the observations from Test 1 and Test 2 can be used to show that solution B contains hydrochloric acid.	0 8 . 1	Identifv the ga	s formed in Test 1 .			
Identity of gas [2 marks] Test	Identity of gas [2 marks] Test				identity of this gas		
		0 8.2	Explain how th solution B con	e observations from T o tains hydrochloric acid	est 1 and Test 2 can be used to s		

08.3	Describe a series of tests that the student can use to show that solution ${f C}$ contains ammonium sulfate.	Do not write outside the box
	[4 marks]	
08.4	The student does an additional experiment to show that solution D contains a mixture of halide ions. One of the halide ions is chloride.	
	Method: Step 1 Add an excess of AgNO ₃ (aq) to 10.0 cm ³ of solution D . Step 2 Filter, wash, dry and weigh the precipitate. Step 3 Add an excess of dilute ammonia to the dry precipitate. Step 4 Filter, wash, dry and weigh the solid that remains. Explain how the masses recorded during this experiment can be used to show that solution D contains a mixture of halide ions.	
	[2 marks]	

Question	Marking guidance	Additional Comments/Guidelines	Mark
08.1	Identity of gas: Carbon dioxide / CO2 Test: When gas bubbled through limewater, a white ppt formed	When gas bubbled through limewater, it turns milky/cloudy M2 dependent on M1	1 (AO3) 1 (AO1)

Question	Marking guidance	Additional Comments/Guidelines	Mark
	Effervescence (with Na ₂ CO ₃ ,) so contains H ⁺ ions / Effervescence (with Na ₂ CO ₃ ,) so is acidic	The result from Test 1 shows the presence of $H^{\scriptscriptstyle +}$ / acidic	1
08.2	White ppt (with AgNO ₃ ,) so contains chloride ions	The result from Test 2 shows the presence of chloride ions.	1 (2 x AO2)
		Allow balanced equation for each test that links to each observation	

Question	Marking guidance	Additional Comments/Guidelines	Mark
08.3	(Warm with some) NaOH,	Use of Ba(OH) ₂ can score M1 and M3	1
	Damp red litmus at the mouth of the tube turns blue	Do not allow red litmus dipped in solution	1
	Add (acidified) BaCl ₂ / Ba(NO ₃) ₂	If reagent incorrect, cannot score observation mark	1
	White ppt formed	If reagent incomplete, mark on	(4 x AO3)

Question	Marking guidance	Additional Comments/Guidelines	Mark
08.4	The second mass is smaller / the mass after step 4 is smaller than the mass after step 2		1
08.4	AgCl dissolves in dilute ammonia / some ppt dissolves as AgCl is soluble in dilute ammonia	The ppt formed by chloride ions dissolves in dilute ammonia.	(2 x AO3)