A' Level Chemistry
 Year 1

Unit 8: Energetics

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Year 1A'Level Chemistry: Periodicity I Group II Group VII

Quizlet Classes

Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

$\mathbf{0}$	$\mathbf{2} \quad$ This question is about energetics.

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ Write an equation, including state symbols, for the reaction with an enthalpy |
| :--- | :--- | :--- | change equal to the enthalpy of formation for iron(III) oxide.

[1 mark]

Table 2

	$\mathrm{CO}(\mathrm{g})$	$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
$\boldsymbol{\Delta}_{\mathrm{f}} \boldsymbol{H}^{\circ} / \mathbf{k J ~ m o l}^{-\mathbf{1}}$	-111	-822

$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-19 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Use these data and the equation for the reaction of iron(III) oxide with carbon monoxide to calculate a value for the standard enthalpy of formation for carbon dioxide.
Show your working.
$\Delta_{\mathrm{f}} H^{\circ}$ \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

Table 3

Process	$\Delta \boldsymbol{H} / \mathbf{k J ~ m o l}^{-1}$
$\mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$	-92
$\mathrm{~N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}(\mathrm{~g})$	+944
$\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$	+436

Use the data from Table 3 to calculate the bond enthalpy for $\mathrm{N}-\mathrm{H}$ in ammonia.
[3 marks]

N-H bond enthalpy \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

| $\mathbf{0}$ | $\mathbf{2} .4$ | $\mathbf{4}$ Give one reason why the bond enthalpy that you calculated in Question $\mathbf{2 . 3}$ is |
| :--- | :--- | :--- | different from the mean bond enthalpy quoted in a data book ($388 \mathrm{~kJ} \mathrm{~mol}^{-1}$).

[1 mark]
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$ A student planned and carried out an experiment to determine the enthalpy of |
| :--- | :--- | :--- | reaction when magnesium metal displaces zinc from aqueous zinc sulfate.

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{Zn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s})
$$

The student used this method:

- A measuring cylinder was used to transfer $50 \mathrm{~cm}^{3}$ of a $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of zinc sulfate into a glass beaker.
- A thermometer was placed in the beaker.
- 2.08 g of magnesium metal powder were added to the beaker.
- The mixture was stirred and the maximum temperature recorded.

The student recorded a starting temperature of $23.9^{\circ} \mathrm{C}$ and a maximum temperature of $61.2^{\circ} \mathrm{C}$.

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$ Show by calculation which reactant was in excess.

Use the data to calculate the experimental value for enthalpy of reaction in $\mathrm{kJ} \mathrm{mol}^{-1}$ (Assume that the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$ and the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$).
\qquad
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

$\mathbf{0}$	$\mathbf{3} .2$	$\mathbf{2}$
Another student used the same method and obtained a value for the		

A data book value for the enthalpy of reaction is $-310 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Suggest the most likely reason for the large difference between the student's experimental value and the data book value.
\qquad
\qquad
\qquad

Question 3 continues on the next page

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ Suggest how the students' method, and the analysis of the results, could be |
| :--- | :--- | :--- | improved in order to determine a more accurate value for the enthalpy of reaction.

Justify your suggestions.
Do not refer to the precision of the measuring equipment. Do not change the amounts or the concentration of the chemicals.
[6 marks]
\qquad

Question	Marking Guidance	Mark	Additional Comments/Guidance
02.1	$2 \mathrm{Fe}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \mathrm{ONLY}$	1	Don't allow multiples. States must be shown
02.2	$\begin{array}{ll} \text { M1 } & \text { Correct cycle or equation } \\ \text { M2 } & \left(3 x \Delta_{t} H C O_{2}\right)=-19+(-822)+3(-111)-0 \\ & \left(3 x \Delta_{t} H C O_{2}\right)=-1174 \\ \text { M3 } & \Delta_{t} H C O_{2}=-391 \mathrm{kJmol}^{-1} \end{array}$	1 1 1	If M 1 and M 2 not awarded then M 3 can be awarded for their M2 divided by 3 -317 for 1 mark +391 for 1 mark Allow 2 sig fig or more
02.3	M1 Correct Hess's law cycle or equation $\text { M2 } \quad \begin{aligned} & (6(N-H))=944+3(+436)+92 \\ & (6(N-H))=2344 \end{aligned}$ M3 $\quad \mathrm{N}-\mathrm{H}=(+) 391 \mathrm{kJmol}^{-1}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	If M 1 and M 2 not awarded then M 3 can be awarded for their M2 divided by 6 -391 for 1 mark Allow 2 sig fig or more

Question	Marking Guidance	Mark	Additional Comments/Guidance
03.1	M1 Amount $\mathrm{ZnSO}_{4}=1.0 \mathrm{x}^{50} / 1000 \mathrm{~mol}$ or $\mathrm{Amount}^{\mathrm{ZnSO}} 44=0.050 \mathrm{~mol}$ M2 Amount $\mathrm{Mg}={ }^{2.08} / 24.3 \mathrm{~mol}$ or Amount $\mathrm{Mg}=0.0856 \mathrm{~mol}$ (Hence Mg in excess) $\begin{aligned} & \text { M3 } \quad Q=m c \Delta T \\ & \text { M4 } \quad Q=50.0 \times 4.18 \times 37.3 \\ & \text { or } Q=7795.7 \mathrm{~J} \end{aligned}$ $\text { M5 } \quad(\text { Energy released per mole })==^{7.796} / 0.05 \mathrm{kmol}^{-1} \text { or }{ }^{7796} / 0.05 \mathrm{Jmol}^{-1}$ $\text { M6 } \quad \Delta H=-156 \mathrm{kJmol}^{-1}$	1 1 1 1 1 1	Mark M1 and M2 independently M3 could be scored in M4 If an error in M4, lose M4 and M5 and only award M6 for correct use of their incorrect M4 and division by their correct limiting reagent M5 division by their limiting reagent

Question	Marking Guidance	Mark	Comments

| 0 | 1 | $\mathbf{5}$ Hydrogen fluoride reacts with ethyne $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ as shown in the equation. All compounds |
| :--- | :--- | :--- | are in the gaseous state.

Table 1 shows some mean bond enthalpy data.

Table 1

Bond	$\mathrm{C}-\mathrm{H}$	$\mathrm{C} \equiv \mathrm{C}$	$\mathrm{H}-\mathrm{F}$	$\mathrm{C}-\mathrm{C}$
Mean bond enthalpy/ $\mathrm{kJ} \mathrm{mol}^{-1}$	412	837	562	348

Use the data in Table 1 to calculate a value for the bond enthalpy of a C-F bond in the product.
\qquad

MARK SCHEME - AS CHEMISTRY - 7404/1 - JUNE 2019

0	$\mathbf{4}$	This question is about enthalpy changes.

| 0 | $\mathbf{4}$ | $\mathbf{1}$ State the meaning of the term enthalpy change as applied to a chemical reaction. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad

| 0 | $\mathbf{4}$ | $\mathbf{2}$ A student determines the enthalpy change for the reaction between |
| :--- | :--- | :--- | calcium carbonate and hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The student follows this method:

- measure out $50 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous hydrochloric acid using a measuring cylinder and pour the acid into a $100 \mathrm{~cm}^{3}$ glass beaker
- weigh out 2.50 g of solid calcium carbonate on a watch glass and tip the solid into the acid
- stir the mixture with a thermometer
- record the maximum temperature reached.

The student uses the data to determine a value for the enthalpy change.
Explain how the experimental method and use of apparatus can be improved to provide more accurate data.

Describe how this data from the improved method can be used to determine an accurate value for the temperature change.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ | In a different experiment $50.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous hydrochloric acid are |
| :--- | :--- | :--- | :--- | reacted with $50.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-57.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The initial temperature of each solution is $18.5^{\circ} \mathrm{C}$
Calculate the maximum final temperature of the reaction mixture.
Assume that the specific heat capacity of the reaction mixture, $c=4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$
Assume that the density of the reaction mixture $=1.00 \mathrm{~g} \mathrm{~cm}^{-3}$
\qquad ${ }^{\circ} \mathrm{C}$

0	4	4
4	Suggest how, without changing the apparatus, the experiment in Question 04.3 could	

\qquad
\qquad

Question	Marking guidance		Additional Comments/Guidelines	Mark
04.1	Heat energy change at constant pressure			1
04.2	This question is marked using levels of response. Level 3: All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer is well structured with no repetition or irrelevant points. Accurate and clear expression of ideas with no errors in use of technical terms. Level 2: All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer shows some attempt at structure Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points. Some minor errors in use of technical terms. Level 1: Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order or show some confusion. Answer may contain valid points which are not clearly linked to an argument structure. Errors in the use of technical terms. Level 0 Insufficient correct chemistry to gain a mark.	5-6	Indicative Chemistry Stage 1: Apparatus 1a. Use a burette/pipette (instead of a measuring cylinder) 1b. Use a polystyrene cup (instead of a beaker) / insulate beaker 1c. Reweigh the watchglass after adding the solid 1d: Use powdered solid Stage 2: Temperature Measurements 2a. Measure and record the initial temperature of the solution for a few minutes before addition 2 b . Measure and record the temperature after the addition at regular intervals (eg each minute) for 8+ minutes/until a trend is observed Stage 3: Temperature Determination 3a. Plot a graph of temperature against time 3b. Extrapolate to the point of addition 3c. Determine $\Delta \mathrm{T}$ at the point of addition	6

	$\mathrm{n}(\mathrm{HCl})$ or $\mathrm{n}(\mathrm{NaOH})=50 \times 0.500 / 1000=0.025$ moles		1
	$\mathrm{q}=-\Delta \mathrm{H} \times \mathrm{n}=57.1 \times 0.025=1.4275 \mathrm{~kJ}$	$\mathrm{M} 2=57.1 \times \mathrm{M} 1$	1
04.3	$\Delta \mathrm{~T}=\mathrm{q} / \mathrm{mc}$	$\mathrm{M} 4=(\mathrm{M} 2 \times 1000) /(100 \times 4.18)$	1
	$\Delta \mathrm{~T}=(1.4275 \times 1000) /(100 \times 4.18)=3.4(2)^{\circ} \mathrm{C}$	$\mathrm{M} 5=\mathrm{M} 4+18.5($ but final temperature must be higher than $\left.18.5^{\circ} \mathrm{C}\right)$	1
	Final Temperature $=18.5+3.4=21.9^{\circ} \mathrm{C}$		1
04.4	Increase the concentration of the solutions		1

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{2}$ Suggest one reason, other than incomplete combustion or heat transfer to the |
| :--- | :--- | :--- | :--- | atmosphere, why the student's value for the enthalpy of combustion of methanol is different from that in a Data Book.

[1 mark]
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ The uncertainty in each of the temperature readings from the thermometer in this |
| :--- | :--- | :--- | experiment was $\pm 0.25^{\circ} \mathrm{C}$. This gave an overall uncertainty in the temperature rise of $\pm 0.5^{\circ} \mathrm{C}$.

Calculate the percentage uncertainty for the use of the thermometer in this experiment.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .4$ | The student said correctly that using a thermometer with an overall uncertainty for |
| :--- | :--- | :--- | :--- | the rise in temperature of $\pm 0.5^{\circ} \mathrm{C}$ was adequate for this experiment.

Explain why this thermometer was adequate for this experiment.
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{5}$ The enthalpy of combustion of ethanol is $-1371 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The density of ethanol |
| :--- | :--- | :--- | :--- | is $0.789 \mathrm{~g} \mathrm{~cm}^{-3}$.

Calculate the heat energy released in kJ when $0.500 \mathrm{dm}^{3}$ of ethanol is burned. Give your answer to an appropriate number of significant figures.
\qquad
\qquad
\qquad
\qquad

Question	Marking Guidance	Mark	Comments
02.1	$\begin{aligned} \text { M1 } & (q=m c \Delta T=100 \times 4.18 \times 38(.0)) \\ & =15884 / 15880 / 15900 / 16000(\mathrm{~J}) \\ & (\text { OR } 15.884 / 15.88 / 15.9 / 16(\mathrm{~kJ})) \\ \text { M2 } & \text { Moles (methanol }=1.65 / 32.0)=0.0516 \text { or } 0.052 \\ \text { M3 } & \text { Heat change per moles }=\text { M1/M2 } \\ & \left(15884 / 0.0516 / 1000=308\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\right. \\ & \text { (allow } 305 \text { to } 310) \\ \text { M4 } & \text { Answer }=-308\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\text { allow }-305 \text { to }-310) \end{aligned}$	1 1 1	Award full marks for correct answer M1 mark is for value not expression (at least 2sf); penalise incorrect units here only if M1 is the only potential scoring point in M1-M3 M2 at least 2sf M3 at least 2sf; answer must be in $\mathrm{kJ} \mathrm{mol}^{-1}$ M4 this mark is for - sign (mark independently)

02.2

```
Heating up copper / calorimeter / container / thermometer /
heat capacity of copper / calorimeter / thermometer not taken
into account
OR
Evaporation of alcohol/methanol
OR
Experiment not done under standard conditions
```

1

Not human errors (e.g. misreading scales)
Not impure methanol
Allow evaporation of water

Allow correct answer to at least 2sf; Allow 1.31 or 1.315%
02.4
Idea that heat loss is more significant issue OR
Idea that temperature change/rise is (significantly / much)
bigger than uncertainty

One of these two ideas only and each one must involve a comparison
02.5

Section A

Answer all questions in this section.

| 0 | 1 |
| :--- | :--- |\quad Figure 1 shows the Maxwell-Boltzmann distribution of molecular energies in a sample of gas at a fixed temperature.

Figure 1

\qquad

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{1}$ Label the horizontal axis in Figure 1.

$\mathbf{0}$	$\mathbf{1} .0$
$\mathbf{2}$ On Figure 1, sketch a distribution of molecular energies for this sample of gas at	

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$ This gas decomposes on heating.

Explain why an increase in temperature increases the rate at which this gas decomposes.
\qquad
\qquad
\qquad
\qquad
\qquad

Question	Marking Guidance	Mark	Comments
01.1	energy	1	Ignore reference to - any units (e.g. $\mathrm{J}, \mathrm{kJ}, \mathrm{J} \mathrm{mol}^{-1}, \mathrm{~kJ} \mathrm{~mol}^{-1}$) - particles - molecules - kinetic NOT mean energy or average energy NOT E

01.2	$\mathbf{M 1}$maximum peak height is lower and displaced to the right of the original	1	1

\begin{tabular}{|c|c|c|c|}
\hline Question \& Marking Guidance \& Mark \& Comments \\
\hline 01.3 \& \begin{tabular}{l}
M1 an increase in the number/amount/proportion/fraction of molecules with \(E \geq E_{\mathrm{a}}\) / with activation energy \\
or more molecules have \(E \geq E_{\mathrm{a}}\) / with activation energy \\
or more molecules have enough / sufficient energy (to react) \\
M2 more successful / effective / productive collisions in a given time / period \\
or higher rate of successful / effective / productive collisions \\
or higher frequency of successful / effective / productive collisions
\end{tabular} \& 1

1 \& | M1 |
| :--- |
| Ignore |
| - Molecules have more energy |
| - More energetic collisions |
| - More collisions |
| Allow $E>E_{a}$ in place of $E \geq E_{a}$ |
| Credit particles for molecules (but not atoms) |
| Penalise for M1 reference to increased activation energy |
| M2 |
| Must refer to both idea of successful/effective/productive collisions and the rate/frequency of collisions |
| Ignore 'chance of collision' |

\hline
\end{tabular}

\section*{| 0 | 4 |
| :--- | :--- | :--- |}

When alkanes are burned in an excess of oxygen they produce carbon dioxide and water.

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{1}$ Write an equation for the complete combustion of propane in oxygen. |
| :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2}$ An expression can be derived using bond enthalpy data to estimate the enthalpy |
| :--- | :--- | :--- | of combustion $\left(\Delta_{c} H\right)$ of an alkane.

For an alkane with \boldsymbol{n} carbon atoms: $\quad \Delta_{\mathrm{c}} H=-(496 \boldsymbol{n}+202) \mathrm{kJ} \mathrm{mol}^{-1}$
The enthalpy of combustion of an alkane was calculated to be $-6650 \mathrm{~kJ} \mathrm{~mol}^{-1}$ using this expression.

Deduce the molecular formula of this alkane. Show your working.

Molecular formula of alkane \qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ Suggest one reason, other than the use of mean bond enthalpies, why a value for |
| :--- | :--- | :--- | :--- | the enthalpy of combustion of a liquid alkane is different from the value obtained using the expression in Question 4.2

\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{4}$ Values of the enthalpy change for combustion of 1 g of some alkanes are shown in
Table 2.		

Table 2

	methane	ethane	propane	butane	pentane
Enthalpy change in kJ for combustion of 1 g	-55.6	-52.0		-49.6	-48.7

Plot the enthalpy change for the combustion of 1 g against the number of carbon atoms in the alkanes in Table 2.

Draw a best fit line and use this to estimate the enthalpy change for combustion of 1 g of propane.
Write your answer in Table 2.

\qquad

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{5}$ Isooctane (2,2,4-trimethylpentane) is an important component of petrol used in |
| :--- | :--- | :--- | cars.

When isooctane is burned, the enthalpy change is $-47.8 \mathrm{~kJ} \mathrm{~g}^{-1}$ Isooctane is a liquid at room temperature with a density of $0.692 \mathrm{~g} \mathrm{~cm}^{-3}$

Calculate the heat energy released, in kJ , when $1.00 \mathrm{dm}^{3}$ of isooctane burns in excess oxygen.
Give your answer to the appropriate number of significant figures.
\qquad kJ

Question	Marking Guidance	Mark	Comments
04.1	$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$	1	allow fractions / multiples allow any correct structural representation of molecules ignore state symbols
04.2	M1 working that leads to $n=13$ $\text { M2 } \quad \mathrm{C}_{13} \mathrm{H}_{28}$	1 1	e.g. $-6650=-(496 n+202)$ and/or $496 n=6650-202$ and/or $496 n=6448$ $(\mathbf{n}=13)$ $\mathrm{C}_{13} \mathrm{H}_{28}$ scores $\mathbf{M} \mathbf{1}$ and $\mathbf{M} \mathbf{2}$ if some correct working shown $\mathrm{C}_{13} \mathrm{H}_{28}$ with no working scores M2 only allow error carried forward for M2 for a correct formula of an alkane from the value of \mathbf{n} worked out for M1 (but there must be some working shown leading to this incorrect value of \mathbf{n}); for example, allow $\mathrm{C}_{14} \mathrm{H}_{30}$ if error in $\mathbf{M 1}$ stemming from error in rearranging equation
04.3	Idea that - alkane is not gaseous or - equation relates to gaseous alkanes or - it takes energy to convert it into a gas or - that water/alkane/substances are gaseous in calculations using bond enthalpies	1	ignore references to heat loss, incomplete combustion, loss of evaporation, not being in standard conditions or that it is not standard state

Question	Marking Guidance	Mark	Comments
04.4	M1 plotting the four values correctly (allow one error where point is ± 1 square out) M2 smooth best fit curve M3 value from their best fit line for 3 C atoms (allow ± 1 square)	1 1	If plotted points for wrong number of C atoms for two or more compounds, cannot score M1 or M2, but could score M3 if read value off for 3 C atoms M2 best fit curve for their four points for the correct number of C atoms M3 need - sign (but ignore units); cannot score M3 unless there is a line on the graph

04.5		mass of isooctane $=692(\mathrm{~g})$	1	correct answer scores M1 and M2
	M2	3.31×10^{4} or 33100 (kJ) (3sf only)	1	M2 correct value to incorrect number of sig figs is 1 mark; ignore sign ; no error carried forward for M2

| 0 | 3 |
| :--- | :--- | This question is about enthalpy changes.

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{1}$ When ethanoic acid reacts with sodium hydroxide, the enthalpy change, ΔH, is |
| :--- | :--- | :--- | $-56.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Calculate the temperature rise when $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous ethanoic acid react with $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide.

Assume that both solutions have the same initial temperature, have a density of $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$ and a specific heat capacity of $4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{2}$ A student recorded the temperature of aqueous ethanoic acid in a polystyrene cup for |
| :--- | :--- | :--- | three minutes.

At the fourth minute, the student added sodium hydrogencarbonate.
The student stirred the mixture and carried on recording the temperature every minute for several minutes.

The student's measurements are shown in Figure 2.
A best-fit line showing the temperature before mixing has been drawn.
Draw an appropriate best-fit line on Figure 2 and use it to find the temperature change at the time of mixing.

Figure 2

Temperature change at time of mixing \qquad ${ }^{\circ} \mathrm{C}$

Question	Marking Guidance	Mark	Comments
3.1	M1 $\operatorname{moles}\left(=\frac{25}{1000} \times 2.0\right)=0.050$ M2 heat released $=0.050 \times 56.1(=2.805 \mathrm{~kJ}$ or 2805 J$)$ M3 $\Delta T=\frac{q}{m c}$ M4 $\quad \Delta T=\frac{2805}{50 \times 4.18}$ or $\frac{1000 \times 0.050 \times 56.1}{50 \times 4.18}=13(.4)\left({ }^{\circ} \mathrm{C}\right)$	1 1 1 1	Correct answer (to at least 2 sig fig) scores 4 marks 27 or $26.8^{\circ} \mathrm{C}$ (from moles of two reagents being added together for M2, or use of $25 \mathrm{~cm}^{3}$ in M4) scores 3 marks $0.013(.4)^{\circ} \mathrm{C}$ (from not converting kJ to J) scores 3 marks (loses M4) [0.027 or $0.0268^{\circ} \mathrm{C}$ would score 2 marks (loses M2 and M4) M1 moles can be shown for either substance or without specifying the substance; if it is shown for both substances, must be correct for both for M1 Allow ECF from M1 to M2 Allow ECF from M2 to M4 (providing an attempt to calculate q has been made - no ECF if 56100 or 56.1 is used as q) Correct M4 scores M3. If error made in M4, M3 could score from substituted values in this expression in M4 M4 final answer to at least 2 sig fig. Penalise M4 for negative temperature rise

M2 (17.2 - value read from graph line at 4 minutes) ± 0.2 $\left({ }^{\circ} \mathrm{C}\right)$

M1 line must be a curve and ignore value at 5 minutes M1 line should not go to times before 4 minutes

M2 allow use of any curved or straight line that is an attempt to draw a line through the values after 4 minutes (that may include the point at 5 minutes)

M2 allow negative values

$\mathbf{0}$	$\mathbf{3}$	This question is about enthalpy changes.

The student

- placed a pure sample of cyclohexane in a spirit burner
- placed the spirit burner under a beaker containing 50.0 g of water and ignited the cyclohexane
- extinguished the flame after a few minutes.

The results for the experiment are shown in Table 1.

Table 1

Initial temperature of the water $/{ }^{\circ} \mathrm{C}$	19.1
Initial mass of spirit burner and cyclohexane / g	192.730
Final mass of spirit burner and cyclohexane / g	192.100

The student determined from this experiment that the enthalpy of combustion of cyclohexane is $-1216 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Use the data to calculate the final temperature of the water in this experiment.
The specific heat capacity of water $=4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$
The relative molecular mass $\left(M_{r}\right)$ of cyclohexane $=84.0$
Final temperature of the water \qquad ${ }^{\circ} \mathrm{C}$

0	3	2	A data book value for the enthalpy of combustion of cyclohexane is $-3920 \mathrm{~kJ} \mathrm{~mol}^{-1}$

The student concluded that the temperature rise recorded in the experiment was smaller than it should have been.
Suggest a practical reason for this.
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ Table 2 gives some values of standard enthalpies of combustion $\left(\Delta_{\mathrm{c}} H^{\circ}\right)$... .0 |
| :--- | :--- | :--- | :--- |

Table 2

Substance	$\mathrm{C}(\mathrm{s})$	$\mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})$
Standard enthalpy of combustion, $\Delta_{\mathrm{c}} \mathrm{H}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$	-394	-286	-3920

Use the data in Table 2 to calculate the enthalpy change for the reaction represented by this equation

$$
6 \mathrm{C}(\mathrm{~s})+6 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})
$$

\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.1	M1 moles cyclohexane $=\frac{192.730-192.100}{84(.0)}$ or $\frac{0.630}{84(.0)}(=0.00750)$ M2 heat released $=1216 \times 1000 \times 0.0075(=9120)(\mathrm{J})$ [or $1216 \times 0.0075=(9.12)(\mathrm{kJ})$] M3 $\quad \Delta T\left(=\frac{\mathrm{q}}{\mathrm{mc}}=\frac{9120}{50(.0) \times 4.18}\right)=43.6$ M4 final temperature $=19.1+\mathbf{M 3}=62.7$ or $63\left({ }^{\circ} \mathrm{C}\right)$ Alternative M3/4 M3 $\quad 9120=50 \times 4.18 \times($ Final T -19.1$)$ M4 Final $\mathrm{T}=62.7$ or $63\left({ }^{\circ} \mathrm{C}\right)$	Correct answer scores 4 marks 0.0075 scores M1 with or without working 9120 or 9.12 scores M1 and M2 with or without working allow ECF at each stage correct M3 scores M1 and M2 ignore negative sign for q in $\mathbf{M 2}$ and/or ΔT in M3, but penalise if used as a temperature fall in M4 (if alternative method used for M3/4 and negative value for q is used, allow M3 for expression with negative q value but do not allow M4) (temperatures to at least 2sf) If candidates use a value in kJ rather than J to find $\Delta \mathrm{T} /$ final T then they lose M3, but ECF to M4 [e.g. 9.12 rather than 9120 giving $\Delta \mathrm{T}=0.0436$ and final temperature $=19.1(436)-$ this would give 3 marks] If candidates use 0.63 g for m in $\mathbf{M} 3$, they will get $\Delta \mathrm{T}=3.46$ and final temperature $=22.56-$ this would give 3 marks] Cannot score M2 using moles = 1	1 1 1

03.2	thermal energy / heat loss or incomplete combustion or evaporation	or idea of heat being transferred to calorimeter allow idea that it is not under standard conditions allow no lid / poor/no insulation	1
03.3	M1 $\quad 6 \times(-394), \quad 6 \times(-286)$ and -3920 $\begin{array}{ll} \text { M2 } & (\Delta \mathrm{H}=)[6 \times(-394)]+[6 \times(-286)]+3920 \\ & \text { (or }(\Delta \mathrm{H}=)[-2364)]+[-1716)]+3920) \\ & \text { (or }(\Delta \mathrm{H}=)-4080+3920) \\ & \\ \text { M3 } & =-160\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{array}$	-160 scores 3 marks; +160 scores 2 marks -8000 scores 2 marks; +8000 scores 1 mark -1876 scores 2 marks; +1876 scores 1 mark M1 is for correct coefficients, i.e. $6 \times \Delta_{c} \mathrm{H} \mathrm{H}_{2} \& 6 \mathrm{x}$ $\Delta_{\mathrm{c}} \mathrm{H}$ C \& $1 \times \Delta_{\mathrm{c}} \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{12}$ (ignore whether + or -) ECF from M1 to M2/3 for incorrect coefficients / arithmetic error / transposition ECF from M2 to M3 for use of products - reactants Ignore any cycle	1

Section A $\quad |$| Do not write |
| :--- |
| outside the |
| box |

Answer all questions in this section.

$\mathbf{0}$	$1 \quad$ This question is about 1-chloropropane.

0	1	1

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{2}$ The equation for a reaction used to manufacture 1-chloropropane is

$$
3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})+\mathrm{PCl}_{3}(\mathrm{I}) \rightarrow 3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(\mathrm{I})+\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{~s})
$$

The enthalpy change for this reaction, ΔH, is $-114 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Table 1 contains some standard enthalpy of formation data.
Table 1

Substance	$\mathrm{PCl}_{3}(\mathrm{I})$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(\mathrm{I})$	$\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{~s})$
$\Delta \mathrm{f} \boldsymbol{H}^{\circ} / \mathbf{~ k J ~ m o l}^{-1}$	-339	-130	-972

Calculate a value for the standard enthalpy of formation of propan-1-ol using the enthalpy change for the reaction and data from Table 1.
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
01.1	M1 The enthalpy / heat energy change when 1 mol (of a substance / compound / product) is formed from its (constituent) elements M2 with (all) reactants and products / all substances in standard states	M1 energy change is not sufficient - must refer to enthalpy change or heat energy change M2 or with (all) reactants and products / substances in normal states under standard conditions / 100 kPa and any specified temperature (usually 298 K) Ignore reference to 1 atmosphere If enthalpy of combustion given rather than formation, then mark M1 and M2 independently, and M2 could score.	1 1

01.2	$\begin{array}{ll} \text { M1 } & \Delta H=\left[\text { sum } \Delta_{\mathrm{f}} H \text { products }\right]-\left[\text { sum } \Delta_{\mathrm{f}} H \text { reactants }\right] \\ & \text { or }-114=[3(-130)-972]-[3 X-339] \\ & \text { or } 3 X=3(-130)-972+339+114 \\ \text { M2 } & 3 X=-909 \\ \text { M3 } & \text { X }=-303\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{array}$		-303 scores 3 marks (+303 scores 2 marks) -909 scores 2 marks (+909 scores 1 mark) ignore units		1
				No ECF from M1 (except +909 or arithmetic error)	1
				ECF from M2, ie M3 -3	1

$\mathbf{0}$	$\mathbf{7}$	This question is about combustion.

0	$\mathbf{7}$	$\mathbf{1}$	State the meaning of the term standard enthalpy of combustion.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ | A student does an experiment to determine the enthalpy of combustion of propan-1-ol |
| :--- | :--- | :--- | :--- | ($\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, M_{\mathrm{r}}=60.0$).

Combustion of 0.497 g of propan-1-ol increases the temperature of 150 g of water from $21.2^{\circ} \mathrm{C}$ to $35.1^{\circ} \mathrm{C}$

Calculate a value, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the enthalpy of combustion of propan-1-ol in this experiment.

The specific heat capacity of water is $4.18 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ The enthalpy of combustion determined experimentally is less exothermic than that |
| :--- | :--- | :--- | :--- | calculated using enthalpies of formation.

Give one possible reason for this, other than heat loss.
Do not write

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.1	Enthalpy change when one mole of a substance burns completely in oxygen With all substances in their standard states (at stated temperature and 100 kPa)	Allow heat energy change / allow fully combust	1
Question	Marking guidance	Additional Comments/Guidelines	Mark
07.2	$\begin{aligned} & \mathrm{q}=\mathrm{mc} \Delta \mathrm{~T}=150 \times 4.18 \times 13.9=8715.3 \mathrm{~J} \\ & \mathrm{n}(\text { propan-1-ol) })=\frac{0.497}{60.0}=0.00828 \mathrm{~mol} \\ & \Delta \mathrm{H}=-\frac{8.7153}{0.00828}=-1050 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	$\mathrm{M} 3=-\mathrm{M} 1 \times 10^{-3} / \mathrm{M} 2$ Minimum of 2 sf needed Must be negative	1 1 1
Question	Marking guidance	Additional Comments/Guidelines	Mark
07.3	Incomplete combustion	Evaporation of fuel Experiment not completed under standard conditions	1

$\mathbf{0}$	$\mathbf{8}$	

0	8	1

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2}$ Propane undergoes complete combustion.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-2046 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Table 3 shows some bond enthalpy data.
Table 3

Bond	C-H	C=O	O-H
Mean bond enthalpy $/ \mathrm{kJ} \mathrm{mol}^{-1}$	412	743	463

The bond enthalpy for $\mathrm{O}=\mathrm{O}$ is $496 \mathrm{~kJ} \mathrm{~mol}^{-1}$
For $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta H=+41 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Use these data to calculate a value for the $\mathrm{C}-\mathrm{C}$ bond enthalpy in propane.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{3}$ Explain why the value given for the $\mathrm{O}=\mathrm{O}$ bond enthalpy in Question $\mathbf{0 8 . 2}$ is not a |
| :--- | :--- | :--- | mean value.

Turn over for Section B

Question	Marking guidance	Additional Comments/Guidelines	Mark
08.1	Heat (energy) change at constant pressure	allow transfer for change	1
08.2	M1 correctly showing how many of which types of bonds are broken / made (broken) $2(\mathrm{C}-\mathrm{C})+8(\mathrm{C}-\mathrm{H})+5(\mathrm{O}=\mathrm{O}) \quad(5776+2(\mathrm{C}-\mathrm{C}))$ (made) $6(\mathrm{C}=\mathrm{O})+8(\mathrm{O}-\mathrm{H})$ M2 including 4(41) for vaporisation of water M3 $\begin{aligned} & 2(\mathrm{C}-\mathrm{C}) \\ & =6(\mathrm{C}=\mathrm{O})+8(\mathrm{O}-\mathrm{H})+4(41)-2046-8(\mathrm{C}-\mathrm{H})-5(\mathrm{O}=\mathrm{O}) \\ & =6(743)+8(463)+4(41)-2046-8(412)-5(496) \\ & =504 \end{aligned}$ M4 $(\mathrm{C}-\mathrm{C})=\frac{\mathrm{M} 3}{2}=252\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	252 scores 4 170 scores 3 (omits vaporisation of water) 168 scores 3 (3 C-C bonds) 113 scores 2 (3 C-C bonds \& omits vaporisation of water) 88 scores 3 (vaporisation of water on wrong side) M1 is for identifying the number and type of bonds broken / made (does not have to explicit if they are broken or made, it is just which bonds and the number of each) M2 is for including 4(41) in some way in the calculation M3 is for calculating total for C-C bonds; allow 340 for 2 marks for omitting 4(41) M4 is for dividing their M3 by two (ie allow ECF from M3 to M4; ECF for 3(C-C) to divide their M3 by three) Ignore units	1 1 1 1
08.3	Oxygen / O_{2} is the only substance that has $\mathrm{O}=\mathrm{O}$ bond		1

 of silverskin.

Table 2

Fuel	Standard enthalpy of combustion $/ \mathbf{k J}$ mol $^{-1}$	Energy released per mole of $\mathbf{C O}_{2}$ produced $/ \mathbf{k J}$
ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$	-1371	
butan-1-ol, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{I})$	-2673	
propanone, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}(\mathrm{I})$	-1786	

One way to measure a fuel's environmental impact is to measure the amount of energy released per mole of CO_{2} produced.

Complete Table 2.
Use your answers to deduce the fuel with the lowest environmental impact by this measure.
\qquad
\qquad

Question 7 continues on the next page

| 0 | $\mathbf{7}$ | $\mathbf{4}$ A student investigated the combustion of propanone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ using calorimetry. |
| :--- | :--- | :--- | :--- |

A copper calorimeter containing water was heated by the complete combustion of some propanone. The student did not record the final temperature of the water.

Table 3 shows the student's results.
Table 3

Mass of propanone burned $/ \mathrm{g}$	1.18
Mass of water $/ \mathrm{g}$	260
Initial temperature of water $/{ }^{\circ} \mathrm{C}$	22.3
Final temperature of water $/{ }^{\circ} \mathrm{C}$	Not recorded

Use the results in Table 3 to calculate a value for final temperature of the water in the experiment.

Assume that no heat was lost in the experiment and that the heat capacity of the calorimeter is negligible.

For propanone, enthalpy of combustion $=-1786 \mathrm{~kJ} \mathrm{~mol}^{-1}$
For water, specific heat capacity $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{5}$	Butan-1-ol can be added to petrol for cars.

An equation for the complete combustion of gaseous butan-1-ol is shown.

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-2504 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Table 4 shows some mean bond enthalpy data.

Table 4

Bond	$\mathrm{C}=\mathrm{O}$	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}-\mathrm{O}$	$\mathrm{O}-\mathrm{H}$	$\mathrm{O}=\mathrm{O}$
Mean bond enthalpy/kJ mol	-1	805	412	360	463
496					

Use these data to calculate a value for the mean $\mathrm{C}-\mathrm{C}$ bond enthalpy in gaseous butan-1-ol.

Question	Marking guidance	Additional Comments/Guidelines	Mark

	M1	685.5 (686), 668(.25), 595(.33...) in third column of table		ignore any minus sign on values	1
07.3	M2	depends on their answer to M1 - must be the compound giving most energy per mole of CO_{2} released (correct M1 would give ethanol)	M2	need evidence of attempt to calculate energy released per C atom (i.e. per mole of CO_{2} formed)	$\begin{gathered} 1 \\ (2 \times \mathrm{AO} 3) \end{gathered}$

07.4	M1 amount propanone $=\frac{1.18}{58.0} \quad(=0.0203 \mathrm{~mol})$ M2 $\quad \mathbf{q}=\mathbf{M 1} \times 1786(=36.3 \mathrm{~kJ}=36300 \mathrm{~J})$ M3 $\quad \Delta \mathrm{T}\left(=\underset{\mathrm{mc}}{\mathrm{q}}=\underset{260 \times 4.18}{\mathrm{M2}(\mathrm{in})}\right.$) $=33.4\left({ }^{\circ} \mathrm{C}\right) \quad$ (allow 32.8-33.4) M4 final temperature $=(22.3+\mathbf{M 3})=55.7\left({ }^{\circ} \mathrm{C}\right)$ (allow 55-56)	Correct answer scores 4 marks Allow ECF at each stage M3 ignore sign M4 must show a temperature rise	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ (4 \times \mathrm{AO} 2) \end{gathered}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.5	M1 correctly showing how many of which types of bonds are broken and made (broken) $3(\mathrm{C}-\mathrm{C})+9(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+(\mathrm{O}-\mathrm{H})+6(\mathrm{O}=\mathrm{O})$ (made) $8(\mathrm{C}=\mathrm{O})+10(\mathrm{O}-\mathrm{H})$ M2 $\begin{aligned} & \text { (bonds broken) }-(\text { bonds made) }=-2504 \\ & 7507+3(C-C)-11070=-2504 \\ & 3(C-C)=1059 \end{aligned}$ M3 $(\mathrm{C}-\mathrm{C})=\frac{\mathrm{M} 2}{3}=353\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	Correct answer scores 3 marks; 265 scores 2 marks if from 4(C-C) bonds 1188 scores 2 marks (not included -2504) 2022 scores 2 marks (using (made - broken)) -353 scores 2 marks ± 834 scores 2 marks (use of C-O in CO_{2}) ± 836 scores 1 marks (use of C - O in CO_{2} and using (made - broken)) M1 could show broken as: $\begin{aligned} & 3(\mathrm{C}-\mathrm{C})+9(412)+(360)+(463)+6(496) \\ & \text { or } 7507+3(\mathrm{C}-\mathrm{C}) \\ & \text { and, could show made as } \\ & 8(805)+10(463) \\ & \text { or } 11070 \end{aligned}$ M2 Allow ECF from M1 to M2 Ignore incorrect number of C-C bonds in M1/2, but should be 3 for M3 M3 Allow ECF from M2 to M3 (if M2 is negative value, then ignore sign for M3)	$\begin{gathered} 1 \\ (3 \times \mathrm{AO} 2) \end{gathered}$

