A' Level Chemistry
 Year 1

Unit 6: REDOX

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based
Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

When an acidified solution of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ is added to aqueous potassium iodide, iodine and nitrogen monoxide (NO) are formed.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ Give the oxidation state of nitrogen in the following species. |
| :--- | :--- | :--- | :--- |

$\mathrm{NO}_{2}{ }^{-}$ \qquad
NO

| $\mathbf{0}$ | $\mathbf{8}$ |
| :--- | :--- | $\begin{aligned} & \mathbf{2} \text { Write a half-equation for the conversion of } \mathrm{NO}_{2}^{-} \text {in an acidic solution }\end{aligned}$ into NO

| 0 | 8 |
| :--- | :--- | $\mathbf{3}$ Write a half-equation for the conversion of I^{-}into I_{2}

[1 mark]

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{4}$ | Write an overall ionic equation for the reaction of $\mathrm{NO}_{2}{ }^{-}$in an acidic solution |
| :--- | :--- | :--- | :--- | with I^{-}

| $\mathbf{0}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- |\quad| $\mathbf{5}$ |
| :--- |

Question 8 continues on the next page

| $\mathbf{0}$ | $\mathbf{8}$ | 6 | In aqueous solution, nitrite ions react with acidified chlorate(V) ions according to |
| :--- | :--- | :--- | :--- | the equation

$$
2 \mathrm{ClO}_{3}^{-}+5 \mathrm{NO}_{2}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cl}_{2}+5 \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

A $25.0 \mathrm{~cm}^{3}$ sample of an aqueous solution of sodium nitrite required $27.40 \mathrm{~cm}^{3}$ of a $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of potassium chlorate (V) for complete reaction.

Calculate the concentration, in $\mathrm{g} \mathrm{dm}^{-3}$, of sodium nitrite in the sample.
\qquad $\mathrm{g} \mathrm{dm}^{-3}$

Question	Marking Guidance	Mark	Additional Comments/Guidance
08.1	$\mathrm{NO}_{2}^{-}+3$ or III or 3 or $3+$ NO +2 or II or 2 or $2+$	1 1	
08.2	$\mathrm{NO}_{2}^{-}+\mathrm{e}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$ (OR double)	1	
08.3	$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-} \quad$ (OR half)	1	
08.4	$2 \mathrm{NO}_{2}^{-}+2 \mathrm{I}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	1	
08.5	Oxidising agent	1	Allow to accept/gain electrons Allow Oxidant Do not allow accept/ gain pairs of electrons Do not allow Oxidise

08.6	$\mathrm{Mol} \mathrm{ClO}_{3}^{-}=0.02 x^{27.4} / 1000=5.48 \times 10^{-4}$	1	
	$\mathrm{Mol} \mathrm{NO}_{2}^{-}=5 / 2\left(0.02 \times^{27.4} / 1000\right)=1.37 \times 10^{-3}$	1	
	$\begin{aligned} & {\left[\mathrm{NO}_{2}^{-}\right]=\mathrm{mol} \mathrm{NO}_{2}^{-} /\left({ }^{25} / 1000\right)} \\ & {\left[\mathrm{NaNO}_{2}\right]=0.0548 \mathrm{moldm}^{-3}} \end{aligned}$	1	
	Conc $\mathrm{NaNO}_{2}=(0.0548) \times 69.0=3.78 \mathrm{gdm}^{-3}$	1	Minimum 2 sf

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{4}$	Deduce the oxidation state of chromium in the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion.

\qquad

0	3	5	lodide ions can be oxidised to iodine using $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ions.

Deduce a half-equation to show the oxidation of iodide ions to iodine.
State symbols are not required.

| 0 | 3 | . 6 Deduce a half-equation for the conversion in acidic solution of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ions to |
| :--- | :--- | :--- | :--- | Cr^{3+} ions.

State symbols are not required.

| 0 | 3 | 7 |
| :--- | :--- | :--- | Use your answers from questions $\mathbf{0 3 . 5}$ and $\mathbf{0 3 . 6}$ to deduce the overall redox equation for the reaction between iodide ions and acidified $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ions.

State symbols are not required.

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.4	+6/VI / six / 6+		1
03.5	$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$	Allow multiples / ignore ss	1
03.6	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	Allow multiples / ignore ss	1
03.7	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}$	Allow multiples / ignore ss Allow $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+8 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cr}^{2+}+7 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}$ as ecf to 03.6	1

Half-equation for the oxidation of $\mathrm{SO}_{3}{ }^{2-}$ to $\mathrm{SO}_{4}{ }^{2-}$

Half-equation for the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ to Cr^{3+}

Overall equation

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.1 Electron acceptor Do not allow electron pair acceptor 1			

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.2	$\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	Allow multiples in each case	1
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$		1
	$3 \mathrm{SO}_{3}{ }^{2-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{SO}_{4}^{2-}+2 \mathrm{Cr}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$		1

