A' Level Chemistry Year 1

Unit 6: REDOX

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

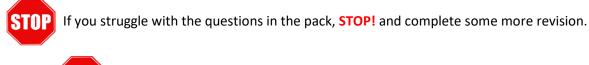
Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Quizlet Classes

48 48 60,59		438 4-38	03 08/125 9
Texture 1 af Z		: Perio	dicity /
Group II / Group	VII		

Online Forms Take Time to Answer Use Paper & Calculator Work It Out

Review Missed Marks


Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
Use your notes to fill any gaps after step 1
Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

Andy Higham - www.chemistrychimp.jimdofree.com

0 8	When an acidified solution of sodium nitrite (NaNO ₂) is added to aqueous potassium iodide, iodine and nitrogen monoxide (NO) are formed.		
0 8 . 1	Give the oxidation state of nitrogen in the following species.	[2 marks]	
	NO ₂ ⁻		
08.2	Write a half-equation for the conversion of NO_2^- in an acidic solution into NO	[1 mark]	
08.3	Write a half-equation for the conversion of I^- into I_2	[1 mark]	
08.4	Write an overall ionic equation for the reaction of NO_2^- in an acidic solution with I^-	ution [1 mark]	
0 8 . 5	State the role of NO_2^- in the reaction with I^-	[1 mark]	
	Question 8 continues on the next page		

0 8 . 6

In aqueous solution, nitrite ions react with acidified chlorate(V) ions according to the equation

$$2ClO_3^{-} + 5NO_2^{-} + 2H^+ \rightarrow Cl_2 + 5NO_3^{-} + H_2O_2$$

A 25.0 cm³ sample of an aqueous solution of sodium nitrite required 27.40 cm³ of a 0.0200 mol dm^{-3} solution of potassium chlorate(V) for complete reaction.

Calculate the concentration, in g dm⁻³, of sodium nitrite in the sample. **[4 marks]**

Concentration of sodium nitrite _____ g dm⁻³

Question	Marking Guidance	Mark	Additional Comments/Guidance
	NO_2^- +3 or III or 3 or 3+	1	
08.1	NO +2 or II or 2 or 2+	1	
08.2	$NO_2^- + e^- + 2H^+ \rightarrow NO + H_2O$ (OR double)	1	
08.3	$2l^- \rightarrow l_2 + 2e^-$ (OR half)	1	
08.4	$2NO_2^- + 2I^- + 4H^+ \rightarrow I_2 + 2NO + 2H_2O$	1	
08.5	Oxidising agent	1	Allow to accept/gain electrons Allow Oxidant Do not allow accept/ gain pairs of electrons Do not allow Oxidise

	Mol ClO ₃ ⁻ = $0.02 \times \frac{27.4}{1000} = 5.48 \times 10^{-4}$	1	
	Mol NO ₂ ⁻ = $\frac{5}{2} (0.02 \text{ x}^{27.4}/1000) = 1.37 \text{ x} 10^{-3}$	1	
08.6	$[NO_2^-] = mol NO_2^- / ({}^{25}/_{1000})$ $[NaNO_2] = 0.0548 moldm^{-3}$	1	
	Conc NaNO ₂ = (0.0548) x 69.0 = 3.78 gdm^{-3}	1	Minimum 2 sf

03.4	Deduce the oxidation state of chromium in the $Cr_2O_7^{2-}$ ion.	1 mark]	Do not write outside the box
03.5	lodide ions can be oxidised to iodine using $Cr_2O_7^{2-}$ ions. Deduce a half-equation to show the oxidation of iodide ions to iodine. State symbols are not required.	1 mark]	
03.6	Deduce a half-equation for the conversion in acidic solution of $Cr_2O_7^{2-}$ ions to Cr^{3+} ions. State symbols are not required.	1 mark]	
03.7	Use your answers from questions 03.5 and 03.6 to deduce the overall redox ed for the reaction between iodide ions and acidified $Cr_2O_7^{2-}$ ions. State symbols are not required.	quation 1 mark]	9
	Turn over for the next question		

9

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.4	+6 / VI / six / 6+		1
03.5	$2I^- \rightarrow I_2 + 2e^-$	Allow multiples / ignore ss	1
03.6	$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	Allow multiples / ignore ss	1
03.7	$Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 7H_2O + 3I_2$	Allow multiples / ignore ss Allow $Cr_2O_7^{2-} + 14H^+ + 8I^- \rightarrow 2Cr^{2+} + 7H_2O + 4I_2$ as ecf to 03.6	1

			Do not wri outside th
0 3	This question is about redox reactions.		box
03.1	State, in terms of electrons, the meaning of the term oxidising agent.	[1 mark]	
0 3.2	$Cr_2O_7{}^{2-}$ can oxidise $SO_3{}^{2-}$ in acidic conditions to form Cr^{3+} and $SO_4{}^{2-}$		
	Deduce a half-equation for the oxidation of SO_3^{2-} to SO_4^{2-}		
	Deduce a half-equation for the reduction of $Cr_2O_7^{2-}$ to Cr^{3+}		
	Deduce the overall equation for the oxidation of SO_3^{2-} by $Cr_2O_7^{2-}$	[3 marks]	
	Half-equation for the oxidation of SO_3^{2-} to SO_4^{2-}		
	Half-equation for the reduction of $Cr_2O_7^{2-}$ to Cr^{3+}		
	Overall equation		
			4
	Turn over for the next question		
		Turn over ►	

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.1	Electron acceptor	Do not allow electron pair acceptor	1
Question	Marking guidance	Additional Comments/Guidelines	Mark
	SO_3^{2-} + $H_2O \rightarrow SO_4^{2-}$ + $2H^+$ + $2e^-$	Allow multiples in each case	1
03.2	$Cr_2O_7^{2-}$ + 14H ⁺ + 6e ⁻ \rightarrow 2Cr ³⁺ + 7H ₂ O		1
	$3SO_3{}^{2-} + Cr_2O_7{}^{2-} + 8H^+ \rightarrow 3SO_4{}^{2-} + 2Cr^{3+} + 4H_2O$		1