A' Level Chemistry
 Year 1

Unit 5: Halogenoalkanes \& Alkenes

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

Refrigerants are substances used to cool refrigerators and freezers. Until recently, many of the compounds used as refrigerants were chlorofluorocarbons (CFCs), but these are now known to form chlorine radicals. CFCs have been phased out in many countries by international agreement.

| 0 | 5 | $\mathbf{1}$ |
| :--- | :--- | :--- | the upper atmosphere.

1

2 \qquad

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{2}$ Chloropentafluoroethane is a CFC that has been used as a refrigerant.

Draw its displayed formula.
[1 mark]

| 0 | 5 | $\mathbf{3}$ | $1,1,1$-trifluoroethane $\left(\mathrm{CF}_{3} \mathrm{CH}_{3}\right)$ is one of the molecules that has been used as a |
| :--- | :--- | :--- | :--- | refrigerant in place of CFCs.

Explain why 1,1,1-trifluoroethane does not lead to the depletion of the ozone in the upper atmosphere.
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5} .4$ | $\mathbf{4}$ One of the steps in the synthesis of 1,1,1-trifluoroethane $\left(\mathrm{CF}_{3} \mathrm{CH}_{3}\right)$ is the reaction |
| :--- | :--- | :--- | of 1,1-difluoroethane $\left(\mathrm{CHF}_{2} \mathrm{CH}_{3}\right)$ with fluorine in a free-radical substitution reaction.

Write two equations to represent the propagation steps in this conversion of $\mathrm{CHF}_{2} \mathrm{CH}_{3}$ into $\mathrm{CF}_{3} \mathrm{CH}_{3}$

Propagation step 1
\qquad
Propagation step 2
\qquad

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{5}$	A refrigerator contains 1.41 kg of 1,1,1-trifluoroethane $\left(\mathrm{CF}_{3} \mathrm{CH}_{3}\right)$.

Calculate the number of molecules of 1,1,1-trifluoroethane in the refrigerator. Give your answer to an appropriate number of significant figures.
(The Avogadro constant $\mathrm{L}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$)
[2 marks]

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{6}$ There are growing concerns about the use of 1,1,1-trifluoroethane as a refrigerant |
| :--- | :--- | :--- | :--- | :--- | as it is a greenhouse gas that absorbs some of Earth's infrared radiation.

Give one reason why bonds in molecules such as carbon dioxide and 1,1,1-trifluoroethane absorb infrared radiation.
\qquad
\qquad

Question	Marking Guidance	Mark	Comments
05.1	$\begin{aligned} & \mathrm{M} 1 \bullet \mathrm{Cl}+\mathrm{O}_{3} \rightarrow \bullet \mathrm{ClO}+\mathrm{O}_{2} \\ & \mathrm{M} 2 \bullet \mathrm{ClO}+\mathrm{O}_{3} \rightarrow \bullet \mathrm{Cl}+2 \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	M1 and M2 could be in either order. Credit the dot anywhere on the radical. Penalise absence of dot once only. Individual multiples acceptable but both need to be doubled if two marks are to be awarded. Ignore state symbols
05.2		1	Must be displayed formula
05.3	Does not contain Cl or does not release Cl (atoms/radicals) or no $\mathrm{C}-\mathrm{Cl}$ bonds or C-F bond(s) strong / does not break / no F (atom/radicals) released	1	
05.4	$\begin{aligned} & \mathrm{M} 1 \mathrm{CHF}_{2} \mathrm{CH}_{3}+\bullet \mathrm{F} \rightarrow \bullet \mathrm{CF}_{2} \mathrm{CH}_{3}+\mathrm{HF} \\ & \mathrm{M} 2 \bullet \mathrm{CF}_{2} \mathrm{CH}_{3}+\mathrm{F}_{2} \rightarrow \mathrm{CF}_{3} \mathrm{CH}_{3}+\bullet \mathrm{F} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	M1 and M2 could be in either order. Credit the dot anywhere on the radical. Penalise absence of dot once only.

05.5	$\begin{aligned} & \text { M1 moles } \mathrm{CF}_{3} \mathrm{CH}_{3}=1410 / 84(.0)(=16.8,16.79 \mathrm{~mol}) \\ & \text { M2 molecules }=\mathrm{M} 1 \times 6.022 \times 10^{23}=1.01 \times 10^{25}(3 \text { sf only }) \end{aligned}$	1 1	Correct answer scores both marks Allow M2 for M1 x Avogadro with answer to 3 sf (but must have attempted to calculate moles for M1) Ignore incorrect units
05.6	(bonds) vibrate/stretch/bend OR (as bonds) are polar	1	NOT polar molecules; 'they' = bonds

7 The alkene 3-methylpent-2-ene $\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ reacts with hydrogen bromide to form a mixture of 3-bromo-3-methylpentane and 2-bromo-3-methylpentane.

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{1}$ The alkene 3-methylpent-2-ene $\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ exists as E and Z |
| :--- | :--- | :--- | stereoisomers.

Draw the structure of Z-3-methylpent-2-ene.

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{2}$ Name and outline the mechanism for the formation of 3-bromo-3-methylpentane |
| :--- | :--- | :--- | :--- | from this reaction of 3-methylpent-2-ene with hydrogen bromide.

Explain why more 3-bromo-3-methylpentane is formed in this reaction than 2-bromo-3-methylpentane.
\qquad

Question	Marking Guidance	Mark	Comments
07.1		1	Must show all 4 groups bonded to $\mathrm{C}=\mathrm{C}$ Allow $\mathrm{CH}_{3}-$ for methyl group; allow $\mathrm{C}_{2} \mathrm{H}_{5}$ for ethyl group Allow correct structure of the style Allow correct skeletal structure

07.2

NB the arrows here are double-headed
M2 must show an arrow from the double bond towards the H atom of the $\mathrm{H}-\mathrm{Br}$ molecule

M3 must show the breaking of the $\mathrm{H}-\mathrm{Br}$ bond
M4 is for the structure of the tertiary carbocation
M5 must show an arrow from the lone pair of electrons on the negatively charged bromide ion towards the positively charged atom (of either a secondary or) of a tertiary carbocation

M6 3-bromo-3-methylpentane is formed from 3^{y} carbocation OR
2-bromo-3-methylpentane is formed from 2^{y} carbocation
M7 $\underline{3}^{y}$ carbocation more stable than 2^{y}

1

M2-M5 Penalise one mark from their total if half-headed arrows are used

M2 Ignore partial negative charge on the double bond
M3 Penalise incorrect partial charges on $\mathrm{H}-\mathrm{Br}$ bond and penalise formal charges

Penalise M4 if there is a bond drawn to the positive charge
Penalise only once in any part of the mechanism for a line and two dots to show a bond

Max 3 of any 4 marks (M2-5) for wrong organic reactant or wrong organic product (if shown) or secondary carbocation

Max $\mathbf{2}$ of any $\mathbf{4}$ marks in the mechanism for use of bromine
Do not penalise the "correct" use of "sticks"
For M5, credit attack on a partially positively charged carbocation structure but penalise M4

M6 is high demand and must refer to product being formed from/via correct class of carbocation

M7 is high demand and must be clear answer refers to stability of carbocations (intermediates) not products

Candidate that states that products are carbocations would lose M6 and M7

M6,7 allow carbonium ion in place of carbocation; or a description of carbocation in terms of alkyl groups/ number of

			carbon atoms joined to a positive C
			When asked to outline a mechanism, candidates are expected to draw a mechanism with curly arrows (specification 3.3.1.2). On this occasion only we would allow a detailed description as shown. M2 must the describe the movement of a pair of electrons / curly arrow from the $\mathrm{C}=\mathrm{C}$ towards the H atom of the $\mathrm{H}-\mathrm{Br}$ molecule M3 must describe the breaking of the $\mathrm{H}-\mathrm{Br}$ bond with the bonding pair of electrons moving to the Br / curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br M4 is for the structure of the tertiary carbocation (i.e. positive C bonded to one methyl and two ethyl groups) M5 must describe the movement of a pair of electrons from the Br^{-}ion to the positive C atom of the carbocation / curly arrow from the lone pair of electrons on the negatively charged bromide ion towards the positively charged C atom (of either a secondary or) of a tertiary carbocation

2-Methylpropan-1-ol can be prepared by reacting 1-bromo-2-methylpropane with dilute aqueous sodium hydroxide.

| $\mathbf{0}$ | $\mathbf{6}$. |
| :--- | :--- | $\mathbf{1}$ Name and outline the mechanism for this reaction.

Name of mechanism
Mechanism
 excess of sodium hydroxide, 895 mg of 2-methylpropan-1-ol $\left(M_{r}=74.0\right)$ were obtained.

The density of 1-bromo-2-methylpropane is $1.26 \mathrm{~g} \mathrm{~cm}^{-3}$
Calculate the percentage yield for this reaction.
\qquad

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{3}$ When 1-bromo-2-methylpropane reacts with hot, concentrated ethanolic |
| :--- | :--- | :--- | potassium hydroxide rather than dilute aqueous sodium hydroxide, a different product is formed.

Name this organic product and name the mechanism for this reaction.

Name of organic product \qquad
Name of mechanism \qquad

Turn over for the next question

06.1	M1 nucleophilic substitution M2 curly arrow from lone pair on O of OH^{-}to C of $\mathrm{C}-\mathrm{Br}$ M3 curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to the Br	1	Penalise M3 for formal charge on C and/or Br of $\mathrm{C}-\mathrm{Br}$ or incorrect partial charges on $\mathrm{C}-\mathrm{Br}$ Max 1 out of 2 for M2 \& M3 for incorrect reactant or product (ignore poorly drawn bond from C to OH group in product if shown) For SN2 penalise M2 for any additional arrow(s) on NaOH penalise M3 for any additional arrow(s) to/from the Br to/from anything else If SN 1 mechanism given (loss of Br first followed by attack by OH^{-}) then: M2 curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to the Br M3 curly arrow from lone pair on O of OH^{-}to positive C atom of correct carbocation penalise M2 for any additional arrow(s) to/from the Br to/from anything else penalise M3 for any additional arrow(s) on NaOH If curly arrows represent an attempt at an elimination mechanism, cannot score M2 or M3

06.3	M1 methylpropene M2 elimination	1 1	M1 Do not allow any names with numbers for the position of the double bond. Allow 2-methylpropene but no other answer Ignore any drawn mechanism M2 allow base (or basic) elimination but no other answer

| 0 | $7 \quad$ Alcohols undergo dehydration in the presence of concentrated phosphoric acid, |
| :--- | :--- | via a carbocation intermediate, to form alkenes.

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{1}$ Complete the mechanism for the conversion of 2-methylcyclohexanol into |
| :--- | :--- | :--- | 1 -methylcyclohexene via carbocation \mathbf{D} by drawing

- the structure of the missing intermediate
- all necessary curly arrows.

| $\mathbf{0}$ | $\mathbf{7}$. |
| :--- | :--- | $\mathbf{2}$ Draw the structure of a different cyclic alkene formed from carbocation \mathbf{D}.

[1 mark]

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ Carbocation D can undergo a type of reaction called a rearrangement to form |
| :--- | :--- | :--- | :--- | carbocation \mathbf{E}. In this reaction, a hydrogen atom and its bonding pair of electrons move from carbon \mathbf{a} to carbon \mathbf{b} as shown in Figure 2.

Figure 2

Use your knowledge of carbocations to explain why this rearrangement takes place.
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{7}$ | 4 | As a result of the rearrangement in Question 7.3, a third alkene is formed in this |
| :--- | :--- | :--- | :--- | reaction.

Draw the structure of this third alkene.

Question	Marking Guidance	Mark	Comments
07.1		1 1 1 1	Ignore other species that are drawn, but penalise any curly arrows to/from other species for M1/3/4 as relevant (but allow attack by an anion of phosphoric acid on the H that is lost in $\mathbf{M 4}$ in addition to the arrow specified) for M2, the O of the ${ }^{+} \mathrm{OH}_{2}$ group must be bonded to the ring

| 07.2 | Any correct structural representation |
| :--- | :--- | :--- | :--- |

| 07.3 | M1 \quad more stable (carbocation formed) | 1 | For M1 penalise more stable product |
| :---: | :---: | :---: | :---: | :--- |
| | M2 \quad changes from secondary to tertiary (carbocation) | 1 | For M2 allow explanation via inductive effect with more alkyl / C
 groups attached or inductive effect from methyl group as
 alternatives
 Allow 2° or 2^{y} for secondary and 3° or 3^{y} for tertiary |

| 07.4 | Any correct structural representation |
| :--- | :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{8}$	This question is about the structures of some organic molecules.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ Draw the skeletal formula of 3-methylbutanal. |
| :--- | :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{8} .2$
$\mathbf{2}$ Draw the displayed formula of $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$ that is the major product of the reaction	

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{3}$ Thermal cracking of hydrocarbons produces molecules that are attacked by |
| :--- | :--- | :--- | electrophiles because they have a region of high electron density.

Draw the structure of one of these molecules that contains four carbon atoms.
[1 mark]

Mark
1
Must be a skeletal structure
or

Must be a displayed structure
08.3

Any correct structural representation of alkene with 4 C atoms,

 either:1
allow butadiene
but-1-ene or
but-2-ene or
methylpropene

$\mathbf{0}$	6

Compound A

0	6	1	Name Compound \mathbf{A}.

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{2}$ Compound \mathbf{A} has a relative molecular mass $\left(M_{\mathrm{r}}\right)$ of 134.5

The main isotope of hydrogen is ${ }^{1} \mathrm{H}$
The main isotope of carbon is ${ }^{12} \mathrm{C}$
Chlorine consists of two common isotopes, ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$, of which 75% is ${ }^{35} \mathrm{Cl}$
The mass spectrum of \mathbf{A} was recorded when \mathbf{A} was ionised by electron impact to form \mathbf{A}^{+}ions.

Draw, on Figure 3, the peaks for the main molecular ions in the mass spectrum of \mathbf{A}.
[2 marks]
Figure 3

Question 6 continues on the next page

Name the mechanism for this reaction.
Outline the mechanism using the structure of \mathbf{A} shown. Include the structure of the product, alcohol B.

Mechanism
Outline of mechanism

Name the mechanism for this reaction.
State the role of the hydroxide ions.
Outline the mechanism using the structure of \mathbf{A} shown. Include the structure of the product, alkene C.

Mechanism
Role of hydroxide ions
Outline of mechanism

Figure 4

Tick the box that shows the correct compound.
Explain your answer with reference to a bond and the wavenumber of its absorption.

Explanation \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{6}$. 6 Compound \mathbf{D} reacts with dilute aqueous sodium hydroxide in a similar way to \mathbf{A} to ${ }^{2}+$ |
| :--- | :--- | :--- | form alcohol B.

Compound A

Explain why \mathbf{D} reacts more quickly than \mathbf{A} with dilute aqueous sodium hydroxide at the same temperature.
\qquad
\qquad
\qquad
\qquad
\qquad

Question	Marking Guidance	Mark	Comments
6.1	3-chloro-2,4-dimethylpentane	1	This answer only apart from slips with commas and dashes
6.2	M1 lines at $\underline{134}$ and $\underline{136}$ M2 line at $\underline{134}$ to be three times higher than line at $\underline{136}$	1	M1 is for drawing the correct two lines (if other lines are drawn, penalise M1 (but ignore any additional very small lines at 135 or 137) M2 is for the line at 134 being three times as big as the one at 136 (ignore other lines) Accept cross to represent top of lines; if bars drawn - they should be narrow (less than 10% of division) and clear which value they refer to.

M2 curly arrow from lone pair on O of OH^{-}to C of $\mathrm{C}-\mathrm{Cl}$

M3 curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to the Cl

M4 correct structure of alcohol (in any form)

Penalise M3 for formal charge on C and/or Cl of $\mathrm{C}-\mathrm{Cl}$ or incorrect partial charges on $\mathrm{C}-\mathrm{Cl}$; ignore other partial charges on uncharged atoms

For SN2: penalise M2 for any additional arrow(s) on NaOH , or for covalent NaOH ; penalise M3 for any additional arrow(s) to/from the Cl to/from anything else

If SN 1 mechanism given (loss of Cl first followed by attack by OH^{-}) then:
M2 curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to the Cl
M3 curly arrow from lone pair on O of OH^{-}to positive C atom of correct carbocation
penalise M2 for any additional arrow(s) to/from the Cl to/from anything else
penalise M3 for any additional arrow(s) on NaOH
If curly arrows represent an attempt at an elimination mechanism, cannot score M2 or M3

M4 is independent M4 ignore presence of non-organic products
(2.4

6.5	C as C=C $1620-1680 \mathrm{~cm}^{-1}$ OR no O-H $3230-3550 \mathrm{~cm}^{-1}$	1	need the correct compound and an explanation
full wavenumber range or value(s) within the range			

6.6	$\underline{C-B r}$ is weaker than $\underline{C-C l}$ or $\underline{C-B r}$ has lower bond enthalpy than $\underline{C-C l}$ or $\underline{C-B r}$ breaks more easily $\underline{C-C l}$	1	Must compare the $\mathrm{C}-\mathrm{Br}$ and $\mathrm{C}-\mathrm{Cl}$ bonds specifically
Ignore references to bond length, size of atoms, shielding, electronegativity and polarity			
Penalise idea that bromine is more reactive than chlorine			

| $\mathbf{0}$ | $\mathbf{2}$ Bromoethane reacts with potassium cyanide to form compound \mathbf{D}. |
| :--- | :--- | :--- |

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{KCN} \rightarrow \underset{\text { Compound } \mathbf{D}}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{KBr}}
$$

| $\mathbf{0}$ | $\mathbf{2} \cdot \mathbf{1}$ Outline the mechanism for this reaction. |
| :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{2} \cdot \mathbf{2}$ Give the IUPAC name of \mathbf{D}. |
| :--- | :--- | :--- |

\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Calculate the percentage atom economy for the formation of \mathbf{D} in this reaction. |
| :--- | :--- | :--- | :--- |

Give your answer to the appropriate number of significant figures.

Question	Marking guidance	Additional Comments/Guidelines	Mark
02.1	 M1 arrow from lone pair on C of CN^{-}to the C of the CH_{2} group M2 arrow from the $\mathrm{C}-\mathrm{Br}$ bond to the Br	All arrows are double-headed. Penalise one mark from the total for 2.1 if half headed arrows are used. Do not penalise the "correct" use of "sticks" Penalise only once in mechanism for a line and two dots to show a bond Allow the minus sign to be anywhere on the CN^{-}ion M2 penalise formal charges or incorrect partial charges on $\mathrm{C}-\mathrm{Br}$ bond SN1: allow SN1 mechanism with M1 for breakage of C-Br bond and $\mathbf{M 2}$ for attack by CN^{-}on correct carbocation Max 1 of 2 marks for wrong organic reactant Ignore wrong organic product (if shown) Extra arrows or incorrect covalent bonds: Penalise the mark for breaking of $\mathrm{C}-\mathrm{Br}$ bond for any extra arrows involving Br or covalent bond in KBr Penalise the mark for attack by CN^{-}for any extra arrows involving CN or covalent bond in KCN	2

Question	Marking guidance	Additional Comments/Guidelines	Mark
02.2	propanenitrile	ignore any gaps, hyphens, commas allow propane-1-nitrile	1
02.3	M1 $\frac{55(.0)}{108.9+65.1}(\times 100) \quad$ or $\frac{55(.0)}{174(.0)}(\times 100)$ or $\frac{55(.0)}{55(.0)+119(.0)}(\times 100)$ M2 31.6(\%) (must be 3sf)	31.6 scores 2 marks; 32 scores 1 mark no ECF	1

| 0 | 6 | Propene reacts with concentrated sulfuric acid to form two isomers, E and F. |
| :--- | :--- | :--- | The structure of \mathbf{E} is shown.

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{1}$ Name and outline the mechanism for the formation of \mathbf{E} in this reaction.

Name of mechanism \qquad
Mechanism

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark

06.2	 or	Any correct structural formula, including $\mathrm{OSO}_{3} \mathrm{H}$ bonded through O to correct C	1
06.3	M1 idea that \mathbf{E} is formed from/via more stable carbocation M2 idea that 2^{y} carbocation is more stable than 1^{y} carbocation	M1-2 Allow carbonium ion in place of carbocation M2 Allow descriptions in terms of number of alkyl groups attached to positive C atom Ignore reference to inductive effect Penalise M1 if answer suggests that the products are carbocations (but could score M2) In order to access M1 and/or M2 there must be some reference to carbocations (carbonium ions) by name or structure or description	1 1

| $\mathbf{0}$ | $\mathbf{9} \quad$ The compound 1,2-dichlorotetrafluoroethane is a CFC that was previously used in |
| :--- | :--- | :--- | refrigerators as a coolant.

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{1}$ Molecules of 1,2-dichlorotetrafluoroethane can break down in the upper atmosphere |
| :--- | :--- | :--- | to form chlorine radicals.

Give an equation to show the breakdown of one molecule of
1,2-dichlorotetrafluoroethane to form one chlorine radical and one other species.

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{2}$ Give two equations to show how chlorine radicals catalyse the decomposition of |
| :--- | :--- | :--- | ozone.

MARK SCHEME - AS CHEMISTRY - 7404/2 - JUNE 2019

Question	Marking guidance	Additional Comments/Guidelines	Mark
09.1	$\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl} \rightarrow \bullet \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{Cl}+\bullet \mathrm{Cl}$ or $\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}_{2} \rightarrow \bullet \mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}+\bullet \mathrm{Cl}$	Any correct structure or molecular formula for reactant and/or product The dots can be shown anywhere around each radical	1

09.2	$\begin{aligned} & \mathrm{M} 1 \mathrm{Cl} \bullet+\mathrm{O}_{3} \rightarrow \mathrm{ClO} \bullet+\mathrm{O}_{2} \\ & \mathrm{M} 2 \mathrm{ClO} \bullet+\mathrm{O}_{3} \rightarrow \mathrm{Cl} \bullet+2 \mathrm{O}_{2} \end{aligned}$	M1 and M2 could be in either order	1
		Credit the dot anywhere on the radical	1
		Penalise absence of dot once only	
		Individual multiples acceptable but both need to be equivalent multiples for both marks to be awarded	
		Ignore state symbols	
		(Accept alternative pair of equations for M2 (both needed for M2) $\begin{aligned} & \mathrm{O}_{3} \rightarrow \mathrm{O}+\mathrm{O}_{2} \\ & \left.\mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl} \bullet+\mathrm{O}_{2}\right) \end{aligned}$	

0	6	This question is about poly(chloroethene), commonly known as PVC.

| $\mathbf{0}$ | $\mathbf{6} .1$ | $\mathbf{1}$ Give an equation, showing structural formulas, for the conversion of chloroethene into |
| :--- | :--- | :--- | poly(chloroethene).

 Explain this observation.
[2 marks]
Observation \qquad
Explanation \qquad
\qquad
\qquad

| $\mathbf{0}$ | 6 | 3 |
| :--- | :--- | :--- | Plasticisers are often added during the manufacture of PVC. The structure of the plasticiser DEHP is shown.

Deduce the molecular formula of DEHP and state why a plasticiser is added to PVC.

Molecular formula
Why a plasticiser is added \qquad
\qquad

Question	Marking guidance	Additional Comments/Guidelines	Mark
06.1	M1 structure of chloroethene M2 structure of PVC M3 correct use of n on both sides of equation	Allow any correct structural representations of monomer and polymer M2 allow correct repeating unit, but penalise incorrect use of bracket in M3 M2 and M3 could score as ECF from incorrect M1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
06.2	M1 no reaction / yellow-orange M2 polymer is saturated / does not contain double bond(s)	M1 ignore brown; ignore red; ignore 'nothing'; ignore 'no observation'	1
06.3	M1 $\quad \mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}$ M2 makes it more flexible	M2 allow make less brittle; ignore making more elastic	1

$\mathbf{0}$	$\mathbf{2}$ Alkenes react with bromine $\left(\mathrm{Br}_{2}\right)$

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$ Name and outline the mechanism for the reaction of cyclohexene with Br_{2}

Name of mechanism
Outline of mechanism

\qquad

| 0 | 2 | 3 | Draw the skeletal formula of the halogenoalkane formed when |
| :--- | :--- | :--- | :--- | buta-1,3-diene $\left(\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}_{2}\right)$ reacts with an excess of Br_{2}

Question

MARK SCHEME - AS CHEMISTRY - 7404/2 - JUNE 2021

Question	Marking guidance	Additional Comments/Guidelines	Mark
02.3		Must be skeletal structure	1

| $\mathbf{0}$ | $\mathbf{7}$ | Prop-2-en-1-ol is a natural chemical found in garlic. It is also used in the production of |
| :--- | :--- | :--- | plasticisers.

| 0 | 7 | 1 | Prop-2-en-1-ol can be prepared by reacting 3-chloroprop-1-ene with |
| :--- | :--- | :--- | :--- | dilute aqueous sodium hydroxide.

Name the mechanism for this reaction.

| 0 | 7. | 2 |
| :--- | :--- | :--- | acid catalyst.

$$
\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}
$$

Name and outline a mechanism for this reaction.

Name of mechanism \qquad
Outline of mechanism

0	7	3	Prop-2-en-1-ol forms an addition polymer.

Draw the repeating unit of poly(prop-2-en-1-ol).

0	$\mathbf{7}$.	$\mathbf{4}$ Figure 3 shows the infrared spectrum of a functional group isomer of prop-2-en-1-ol....

Figure 3

This isomer reacts with acidified potassium dichromate (VI) to form a green solution. Draw the structure of this isomer.

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.1	nucleophilic substitution		1
Question	Marking guidance	Additional Comments/Guidelines	Mark
07.2	M1 elimination M2 arrow from lone pair on O to H^{+} M3 $1^{\text {st }}$ intermediate and arrow from $\mathrm{C}-\mathrm{O}^{+} \mathrm{H}_{2}$ bond to O M4 2nd intermediate (carbocation) and arrow from a correct $\mathrm{C}-\mathrm{H}$ bond to correct $\mathrm{C}-\mathrm{C}$ to form $\mathrm{C}=\mathrm{C}$	Max 2 of 3 marks (M2-4) for wrong organic reactant (ignore structure of product) M3 and M4 can be scored in one concurrent step: M3 for correct intermediate and arrow from $\mathrm{C}-\mathrm{O}^{+} \mathrm{H}_{2}$ bond to O M4 for arrow from a correct $\mathrm{C}-\mathrm{H}$ bond to correct $\mathrm{C}-\mathrm{C}$ to form $\mathrm{C}=\mathrm{C}$	1

MARK SCHEME - AS CHEMISTRY - 7404/2 - JUNE 2021

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.3		Any correct structural representation Ignore any brackets and/or n	1

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.4		Structure in any form	1

| $\mathbf{0}$ | $\mathbf{3} .2$ | 2 |
| :--- | :--- | :--- | E and Z isomers.

Butanal has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$

| 0 | $\mathbf{3}$. | $\mathbf{3}$ Draw the skeletal formula of a functional group isomer of butanal that has an |
| :--- | :--- | :--- | :--- | absorption in the range $1680-1750 \mathrm{~cm}^{-1}$ in its infrared spectrum.

| $\mathbf{0}$ | $\mathbf{3} .4$ | $\mathbf{4}$ Draw the skeletal formula of a structural isomer of butanal that has an absorption in |
| :--- | :--- | :--- | the range $3230-3550 \mathrm{~cm}^{-1}$ in its infrared spectrum.

| 0 | 3 | $\mathbf{5}$ Several saturated halogenoalkanes contain 17.8\% carbon, 3.0\% hydrogen and |
| :--- | :--- | :--- | :--- | :--- | 79.2\% bromine by mass.

Calculate the empirical formula of these compounds.
Give the IUPAC names of two saturated halogenoalkanes that have this empirical formula.

Empirical formula \qquad

Names of halogenoalkanes
1 \qquad
2 \qquad

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.1		Displayed formula of hex-3-ene (E or Z isomer) Award 1 mark if correct compounds given in 3.1 and 3.2 but they are not displayed formulas	$\begin{gathered} 1 \\ (\mathrm{AO} 2) \end{gathered}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.2	 or	Displayed formula of 2-methylpent-2-ene or 3,4-dimethylbut-2-ene Allow molecules that are both chain and position isomers, e.g. 2-methylpent-1-ene, 3-methylpent-1-ene, 4-methylpent-1-ene, 3,3-dimethylbut-1-ene, 2,3-dimethylbut-1-ene, 2-ethylbut-1-ene Award 1 mark if correct compounds given in 3.1 and 3.2 but they are not displayed formulas	$\begin{gathered} 1 \\ (\mathrm{AO} 2) \end{gathered}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.3		Skeletal formula Award 1 mark if correct compounds given in 3.3 and 3.4 but they are not skeletal formulas	$\begin{gathered} 1 \\ (\mathrm{AO} 2) \end{gathered}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.4		Skeletal formula Alternative answers: Award 1 mark if correct compounds given in 3.3 and 3.4 but they are not skeletal formulas	$\begin{gathered} 1 \\ (\mathrm{AO} 3) \end{gathered}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.5	M1 divide \%s by relative atomic masses: C $\frac{17.8}{12.0}=1.48 \quad H \quad \frac{3.0}{1.0}=3.00 \quad \mathrm{Br} \frac{79.2}{79.9}=0.99$ M2 ($1.48: 3.00: 0.99=3: 6: 2) \quad$ empirical formula $=\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$ M3, 4 any 2 of: 1,1-dibromopropane 1,2-dibromopropane 1,3-dibromopropane 2,2-dibromopropane	Allow ECF from M1 to M2 for a correct empirical formula for their working in M1 Allow ECF from M2 to M3/4 for compounds that are saturated halogenoalkanes	$\begin{gathered} 1 \\ \\ 1 \\ \\ \\ 2 \\ (2 \times \mathrm{AO} 2, \\ 2 \times \mathrm{AOS}) \end{gathered}$

Butan-1-ol can be manufactured by reacting steam with but-1-ene in the presence of the catalyst, concentrated sulfuric acid

In the first part of this process, but-1-ene reacts with concentrated sulfuric acid to form compounds \mathbf{W} and \mathbf{X}.

Compound W

Compound \mathbf{X}

Butan-1-ol is then made from compound \mathbf{W}.

0	7	6
Name and outline a mechanism to show the conversion of but-1-ene into		

Name of mechanism \qquad

Outline of mechanism

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{7}$ There is a very low yield of butan-1-ol from but-1-ene in this manufacturing process.

Explain why.
Do not write
\qquad
\qquad
\qquad
\qquad

Turn over for Section B

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.6	M1 electrophilic addition M2 must show an arrow from the double bond towards the H atom of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecule M3 must show the breaking of the $\mathrm{H}-\mathrm{O}$ bond in $\mathrm{H}_{2} \mathrm{SO}_{4}$ M4 is for the structure of the correct carbocation M5 must show an arrow from the lone pair of electrons on the correct oxygen of HSO_{4}^{-}towards the positively charged atom of their carbocation drawn	All arrows are double-headed. Penalise one mark from the total for 2-5 if half headed arrows are used Do not penalise the "correct" use of "sticks" Penalise only once in any part of the mechanism for a line and two dots to show a bond For M2 I 3, the full structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$ does not need to be shown, but the key features for the mechanism should be shown and the formula must be correct. Penalise only once in M2 / 3 an incorrect but genuine attempt at the structure of sulfuric acid M2 ignore partial negative charges on the double bond M3 penalise incorrect partial charges on the $\mathrm{H}-\mathrm{O}$ bond and penalise formal charges Penalise M4 if there is a bond drawn to the positive charge Max 3 of 4 marks (M2-5) for wrong organic reactant or wrong carbocation (ignore structure of product) If attack is shown from $\mathrm{C}=\mathrm{C}$ to H^{+}rather than $\mathrm{H}_{2} \mathrm{SO}_{4}$, then allow M2 but not M3 For M5, credit attack on a partially positively charged carbocation structure, but penalise M4 for the structure of the carbocation For M5, the full structure of $\mathrm{HSO}_{4}{ }^{-}$is not essential, but attack must come from a lone pair on an individual oxygen on HSO_{4}^{-}, but the - sign could by anywhere on the ion ($\mathrm{eg}: \mathrm{OSO}_{3} \mathrm{H}^{-}$)	

Question	Marking guidance	Additional Comments/Guidelines	Mark	
	M1 formed from/on/via less stable carbocation	M1 $\mathbf{0 7 . 7}$	must be clear that it is the stability of the carbocation that matters rather than the stability of the alcohol	1 (formed from) primary rather than secondary carbocation

