A' Level Chemistry Year 1

Unit 3: Shapes

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms Take Time to Answer Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

	[3 marks]
	Indicate the values of the bond angles.
	Include in your diagrams any lone pairs of electrons that influence the shape.
0 7 . 1	Draw diagrams to illustrate the shapes of NH_3 molecules and of $AlCl_3$ molecules.
	$NH_3 + AlCl_3 \rightarrow H_3NAlCl_3$
7	Ammonia reacts with aluminium chloride as shown by the equation:

07.2	Name the type of bond formed between N and Al in H_3NAlCl_3 and explain how this band is formed
	[2 marks]
	Type of bond
	Explanation
07.3	Explain how the value of the Cl-Al-Cl bond angle in AlCl ₃ changes, if at all, on formation of the compound H_3NAlCl_3
	[2 marks]
	120 (NHz)
	[(09°5
	-
	I urn over for the next question
	Turn over 🕨

Question	Marking Guidance		Comments
07.1	Correct diagram of NH_3 including LP on N Correct diagram of $AICI_3$ bond angles in range 106-108° and bond angle of 120° H H H H H H H H H H	1 1 1	Ignore shape names

07.2	Dative (covalent) /co-ordinate bond	1	Wrong bond CE=0 but mark on if covalent quoted
	Shared pair of / both electrons come from the $N(H_3)$	1	

07.3 Aluminium is now surrounded by 4 electron pairs/bonds or is	1	Independent
tetrahedral Therefore CI-AI-CI bond angle decreases / changes (from 120° in AICI ₃) to allow range $107-111^{\circ}$ in H ₃ NAICI ₃	1	

0 5	This question is at	oout intermolecular forces.	
0 5.1	Give the meaning	of the term electronegativity.	[1 mark]
0 5.2	Explain how perma	anent dipole-dipole forces arise	e between hydrogen chloride
			[2 marks]
	<u></u>	+ $8 8+$	<u> </u>
	(-)	-(Lum H-C	<u>×</u>
0 5.3	Complete Table 4	by naming the shape of each r	nolecule.
	Place a tick (\checkmark) in	the final column if the molecule	e has a permanent dipole. [4 marks]
8-)	Molecule	Name of shape	Tick (✓) if molecule has a permanent dipole
	SiH ₄	5- 64 H 67 64 6- CP-R-Cl 8-	
	PH ₃		
	BeCl ₂		
	CH ₃ Cl		

7

Question	on Marking Guidance		Additional Comments/Guidance
05.1	Power of an atom to attract a pair of electrons in a covalent bond.	1	Allow power of an atom to attract a bonding/shared pair of electrons Allow power of an atom to withdraw electron density from a covalent bond Not lone pair Not Element
Difference in electronegativityleads to bond polarity05.2(dipoles don't cancel the molecule has an overall permanent dipole) and there is an attraction between ∂ + on one molecule and ∂ - on another		1	If chloride (ions) mentioned then CE=0 partial charges should be correct if shown and can score M2 from diagram

	SiH ₄	Tetrahedral		1 shape & no tick	If shapes are drawn rather than named then
05.2	PH ₃	Pyramidal (trigonal) Allow tetrahedral	\checkmark	1 shape & tick	penalise first mark gained
05.5	BeCl ₂	Linear		1 shape & no tick	
	CH₃Cl	(Distorted)Tetrahedral	\checkmark	1 shape & tick	

09	This question is about compounds containing fluorine.
09.1	Draw the shape of a molecule of krypton difluoride (KrF ₂). Include in your answer any lone pairs of electrons that influence the shape. Name the shape produced by the atoms in a KrF ₂ molecule and suggest a bond angle. [3 marks] $K_{1} = SEP - 2BP - 3PP$
	Name of shape Bond angle
	Explain how the lone pairs of electrons on the oxygen atom influence the bond angle in oxygen difluoride. [2 marks]

Turn over ►

8

09.3	Silicon tetrafluoride (SiF ₄) is a tetrahedral molecule.
	Deduce the type of intermolecular forces in SiF_4 Explain how this type of intermolecular force arises and why no other type of intermolecular force exists in a sample of SiF_4
	[3 marks]

MARK SCHEME – AS CHEMISTRY – 7404/1 – JUNE 2018

_Qu	Marking Guidance	Additional Comments	Mark
9.1	F — Kr F	Allow diagram with 2 bonds <u>and</u> 3 lone pairs	1
	Linear		1
	<u>180°</u>		1
9.2	Lone pairs repel more than bond pairs		1
	bond angle will be lower (than regular tetrahedral angle) / bond angle of $103\text{-}106^\circ$	Allow idea of reducing bond angle	1
9.3	Van der Waals forces	Allow London forces, dispersion forces, induced dipole-dipole Apply List for M1. Allow M2 if vdW mentioned in M1, otherwise CE=0	1
	(Uneven distribution of electrons in) one molecule <u>induces</u> dipole <u>in</u> neighbouring/another/nearby <u>molecule</u>		1
	symmetrical molecule / dipoles cancel OR no hydrogens bonded to F (N or O), therefore no hydrogen bonding		1

0 1.3	The ion $H_2F^{\scriptscriptstyle +}$ is formed when hydrogen fluoride gains a proton as shown in the equation			
		$HF + H^{*} \to$	H_2F^+	
	Name the ty Explain how	ype of bond formed when HF reacts w this bond is formed.	s with H ⁺ [2 marks]	
	Type of bor	nd		
	Explanation	ı		
0 1 4	Fluoroantim	nonic acid contains two ions. SbF _e -	and H₂F⁺	
	Draw the shape of the SbF_6^- ion and the shape of the H_2F^+ ion. Include any lone pairs that influence the shape.			
	Name the s	shape of each ion.	[4 marks]	
		SbF₂⁻	H ₂ F ⁺	
	Shape	$5 \qquad 0 1 0 0 0 0 0 0 0 0 $	F = 7, 000, 000, 000, 000, 000, 000, 000,	
			2-4C1 25 2CP	
	Name of shape			
			J	

Do not write outside the box

Question	Marking guidance		Additional Comments/Guidelines	Mark	
	Type of Bond: Coordinate bond / dative (covalent) bond			If just covalent, then do not award M1 but mark on	1
01.3	Explanation: A (lone) pair of electrons is donated from F		Allow both electrons (in the shared pair) come from F	1	
	Shape F 7	Lone pairs on H_2F^+ are essential (can be shown in labor)	Lone pairs on H_2F^+ are essential (can be shown in	1	
		F F Sb F		Ignore missing charges	1
01.4		F _			1
01.4	Name of shape	Octahedral	Bent / V-shaped / angular	Mark independently	1

0 6	This question is about shapes of molecules and ion	ns.		טס not write outside the box
	Draw the shape of NCl $_3$ and of NCl $_4^+$			
	Include any lone pairs of electrons that influence th	ne shape.		
	Name the shape of NCl_3			
	State and explain the bond angle in NCl_4^+		[5 marks]	
	Shape of NCl ₃	Shape of NCl4*		
	Name of shape of NCl ₃			
	Bond angle in NCl₄ ⁺			
	Explanation of bond angle in NCl₄ ⁺			
)
	Turn over for the next questi	on		

Turn over ►

Question	Marking guidance	Additional Comments/Guidelines	Mark
06	Shapes:	Must show Ip on NCl ₃	1 1
		Must have some indication that shape is 3D	
	Name of shape of $NCl_3 = Pyramidal$	Allow tetrahedral	1
	Bond Angle = 109.5°	Allow 109 – 109.5°	1
	(4 bp and 0 lp) electron pairs repel equally / electron pairs repel to be as far apart as possible	Do not allow atoms repel equally Allow bonds repel equally	1

0 3	This ques	stion is about shapes of molecules.		Do not write outside the box
	Complete showing a	• Table 2 by drawing the shapes of bo all lone pairs of electrons that influence	th the AsF ₅ and KrF ₂ molecules, the shape.	
	Deduce th	he bond angle(s) in AsF ₅	[2 marke]	
			[3 marks]	
		Table 2		
		AsF₅	KrF ₂	
Diagram	of shape			
Bond an	gle(s)			3
Turn over for the next question				

Turn over ►

Question		Marking guidance		Additional Comments/Guidelines	Mark
03.1	Diagram of shape Bond angle(s)	$ \begin{array}{c} AsF_{5} \\ F \\ F \\ F \\ $	\mathbf{KrF}_{2} $\mathbf{F} - \mathbf{Kr} - \mathbf{F}$ $\mathbf{Kr}_{1} + \mathbf{F}$ \mathbf{F}_{2}	KrF2 must show lone pairs (either as lobes or crosses/dots) and must be linear. Ignore any lone pairs on fluorine.	3 (3 x AO1)

03.3	Molecules of propan-2-ol and	propanone each contain th	ree carbon atoms.	Do not write outside the box
	Complete Table 1 to suggest in a molecule of each compou	the shape and a bond angleind.	e around the central C atom	
			[2 marks]	
		Table 1		
	Compound	propan-2-ol CH₃CH(OH)CH₃	propanone CH ₃ COCH ₃	
	Shape around central C atom			
	Bond angle around central C atom			
	Evalain why proposed has a	lower bailing point then pro		
0 5.4	Explain why propanone has a	lower boiling point than pro	[3 marks]	
				45
				15
	Turn over	r for the next question		

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.3	 M1 propan-2-ol: tetrahedral and 109.5° M2 propanone: trigonal planar and 120° 	 M1 allow 104–110° M2 allow 115–123° Any two correct boxes scores one mark 	1
03.4	 M1 propan-2-ol has stronger intermolecular forces M2 propan-2-ol has hydrogen bonds between molecules M3 propanone has dipole-dipole forces and/or van der Waals' forces 	Penalise M1 and M2 for any reference to breaking covalent bonds, (but M3 could score) For M2 ignore reference to dipole-dipole forces in propan-2-ol	1 1 1