A' Level Chemistry
 Year 1

Unit 3: Shapes

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

7 Ammonia reacts with aluminium chloride as shown by the equation:

$$
\mathrm{NH}_{3}+\mathrm{AlCl}_{3} \rightarrow \mathrm{H}_{3} \mathrm{NAlCl}_{3}
$$

 Include in your diagrams any lone pairs of electrons that influence the shape. Indicate the values of the bond angles.

| $\mathbf{0}$ | $\mathbf{7}$. 2 Name the type of bond formed between N and Al in $\mathrm{H}_{3} \mathrm{NAICl}_{3}$ and explain how |
| :--- | :--- | :--- | this bond is formed.

Type of bond \qquad
Explanation \qquad
\qquad
\qquad
\qquad
$\mathbf{0} 7$. $\mathbf{7}$ Explain how the value of the $\mathrm{Cl}-\mathrm{Al}-\mathrm{Cl}$ bond angle in AlCl_{3} changes, if at all, on formation of the compound $\mathrm{H}_{3} \mathrm{NAICl}_{3}$

Turn over for the next question

Question	Marking Guidance	Mark	Comments
07.1	Correct diagram of NH_{3} including LP on N Correct diagram of AlCl_{3} bond angles in range $106-108^{\circ}$ and bond angle of 120°	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Ignore shape names

07.2	Dative (covalent) /co-ordinate bond	1	Wrong bond $\mathrm{CE}=0$ but mark on if covalent quoted
	Shared pair of / both electrons come from the $\mathrm{N}\left(\mathrm{H}_{3}\right)$	1	

07.3	Aluminium is now surrounded by 4 electron pairs/bonds or is tetrahedral Therefore Cl-Al-Cl bond angle decreases / changes (from 120° in AICl_{3}) to allow range $107-111^{\circ}$ in $\mathrm{H}_{3} \mathrm{NAICl}_{3}$	1	Independent

$\mathbf{0}$	$\mathbf{5} \quad$ This question is about intermolecular forces.

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1}$ Give the meaning of the term electronegativity.

\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5} \cdot \mathbf{2}$ Explain how permanent dipole-dipole forces arise between hydrogen chloride |
| :--- | :--- | :--- | molecules.

\qquad

$$
H-C l \cdots \cdots \cdots-C l
$$

\qquad
\qquad
\qquad
\qquad

0	5	3

Place a tick (\checkmark) in the final column if the molecule has a permanent dipole.
[4 marks] Table 4

Question	Marking Guidance			Mark	Additional Comments/Guidance
05.1	Power of an atom to attract a pair of electrons in a covalent bond.			1	Allow power of an atom to attract a bonding/shared pair of electrons Allow power of an atom to withdraw electron density from a covalent bond Not lone pair Not Element
05.2	(dipoles don't cancel the molecule has an overall permanent dipole) and there is an attraction between $\partial+$ on one molecule and ∂ - on another			1 1	If chloride (ions) mentioned then $\mathrm{CE}=0$ partial charges should be correct if shown and can score M2 from diagram
05.3	SiH_{4}	Tetrahedral		1 shape \& no tick	If shapes are drawn rather than named then penalise first mark gained
	PH_{3}	Pyramidal (trigonal) Allow tetrahedral	$\sqrt{ }$	1 shape \& tick	
	BeCl_{2}	Linear		1 shape \& no tick	
	$\mathrm{CH}_{3} \mathrm{Cl}$	(Distorted)Tetrahedral	$\sqrt{ }$	1 shape \& tick	

| $\mathbf{0}$ | $\mathbf{9} \quad$ This question is about compounds containing fluorine. |
| :--- | :--- | :--- |

Include in your answer any lone pairs of electrons that influence the shape. Name the shape produced by the atoms in a KrF_{2} molecule and suggest a bond angle.

[3 marks]

Name of shape

Bond angle

| $\mathbf{0}$ | $\mathbf{9}$. 2 There are two lone pairs of electrons on the oxygen atom in a molecule of |
| :--- | :--- | :--- | oxygen difluoride (OF_{2}).

Explain how the lone pairs of electrons on the oxygen atom influence the bond angle in oxygen difluoride.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Deduce the type of intermolecular forces in SiF_{4}
Explain how this type of intermolecular force arises and why no other type of intermolecular force exists in a sample of SiF_{4}

Intermolecular forces in SiF_{4} \qquad
Explanation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MARK SCHEME - AS CHEMISTRY - 7404/1 - JUNE 2018

Qu	Marking Guidance	Additional Comments	Mark
9.1	Linear 180°	Allow diagram with 2 bonds and 3 lone pairs	1 1
9.2	Lone pairs repel more than bond pairs bond angle will be lower (than regular tetrahedral angle) / bond angle of 103-106 ${ }^{\circ}$	Allow idea of reducing bond angle	
9.3	Van der Waals forces (Uneven distribution of electrons in) one molecule induces dipole in neighbouring/another/nearby molecule symmetrical molecule / dipoles cancel OR no hydrogens bonded to F (N or O), therefore no hydrogen bonding	Allow London forces, dispersion forces, induced dipole-dipole Apply List for M1. Allow M2 if vdW mentioned in M1, otherwise CE=0	1

| $\mathbf{0}$ | $\mathbf{1}$ | . $\mathbf{3}$ The ion $\mathrm{H}_{2} \mathrm{~F}^{+}$is formed when hydrogen fluoride gains a proton as shown in the |
| :--- | :--- | :--- | equation

$$
\mathrm{HF}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{~F}^{+}
$$

Name the type of bond formed when HF reacts with H^{+} Explain how this bond is formed.

Type of bond \qquad
Explanation \qquad
\qquad
\qquad
\qquad
\qquad

0	1	4	Fluoroantimonic acid contains two ions, $\mathrm{SbF}_{6}{ }^{-}$and $\mathrm{H}_{2} \mathrm{~F}^{+}+{ }^{+}$.

Draw the shape of the $\mathrm{SbF}_{6}{ }^{-}$ion and the shape of the $\mathrm{H}_{2} \mathrm{~F}^{+}$ion. Include any lone pairs that influence the shape.

Name the shape of each ion.

	$\mathrm{SbF}_{6}{ }^{-}$	$\mathrm{H}_{2} \mathrm{~F}^{+}$
Shape		$\begin{gathered} F=7 \\ 2 B r=2^{+} \\ \frac{8}{2}=4 E P 2 B 2 \angle D \end{gathered}$
Name of shape		

Question	Marking guidance	Additional Comments/Guidelines	Mark

01.3	Type of Bond: Coordinate bond / dative (covalent) bond	If just covalent, then do not award M1 but mark on	1
Explanation: A (lone) pair of electrons is donated from F	Allow both electrons (in the shared pair) come from F	1	

01.4	Shape		$\left[\mathrm{H}^{\mathrm{xx}} \mathrm{F}^{\mathrm{xx}} \mathrm{Z}_{\mathrm{H}}\right]^{+}$	Lone pairs on $\mathrm{H}_{2} \mathrm{~F}^{+}$are essential (can be shown in lobes) Ignore missing charges	1 1 1
	Name of shape	Octahedral	Bent / V-shaped / angular	Mark independently	1

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark
06	Shapes:	Must show Ip on NCl_{3} Must have some indication that shape is $3 D$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	Name of shape of $\mathrm{NCl}_{3}=$ Pyramidal Bond Angle $=109.5^{\circ}$ (4 bp and 0 lp) electron pairs repel equally / electron pairs repel to be as far apart as possible	Allow tetrahedral Allow 109-109.5 ${ }^{\circ}$ Do not allow atoms repel equally Allow bonds repel equally	1

0 3					
Complete Table 2 by drawing the shapes of both the AsF_{5} and KrF_{2} molecules, showing all lone pairs of electrons that influence the shape.					
Table 2					
			AsF 5	KrF_{2}	
Diagram of shape					
	Bond angle(s)				

Complete Table 2 by drawing the shapes of both the AsF_{5} and KrF_{2} molecules, showing all lone pairs of electrons that influence the shape.

Deduce the bond angle(s) in AsF_{5}

Table 2

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark

03.1	Diagram of shape	AsF_{5}	KrF_{2}	KrF_{2} must show lone pairs (either as lobes or crosses/dots) and must be linear. Ignore any lone pairs on fluorine.	$\stackrel{3}{(3 \times \mathrm{AO} 1)}$
			$x \times$		
	Bond angle(s)	M3: 90 and 120			

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ Molecules of propan-2-ol and propanone each contain three carbon atoms. |
| :--- | :--- | :--- | :--- |

Complete Table 1 to suggest the shape and a bond angle around the central C atom in a molecule of each compound.
[2 marks]
Table 1

Compound	propan-2-ol $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	propanone $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
Shape around central C atom		
Bond angle around central C atom		

| $\mathbf{0}$ | $\mathbf{3} .4$ Explain why propanone has a lower boiling point than propan-2-ol. |
| :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.3	M1 propan-2-ol: tetrahedral and 109.5° M2 propanone: trigonal planar and 120°	M1 allow 104-110 M2 allow 115-123 ${ }^{\circ}$ Any two correct boxes scores one mark	1
03.4	M1 propan-2-ol has stronger intermolecular forces M2 propan-2-ol has hydrogen bonds between molecules M3 propanone has dipole-dipole forces and/or van der Waals' forces	Penalise M1 and M2 for any reference to breaking covalent bonds, (but M3 could score) For M2 ignore reference to dipole-dipole forces in propan-2-ol	1 1 1

