A' Level Chemistry Year 1

Unit 3: Bonding

Summer Examination Revision Pack

The questions in this pack should be attempted **AFTER** completing all other revision.

Grade Accelerator Recall Definitions Drawing Diagrams Using Equations Drawing Graphs

Condensed Notes Keywords & Definitions Key Concepts Application Key Skills

Quizlet Classes Flashcard Based Games Tests & Quizzes Keyword Spell Checker

Online Forms

Take Time to Answer Use Paper & Calculator Work It Out Review Missed Marks

Use the 3 Wave Process when completing these revision packs.

 Complete the questions without assistance (Can't answer a question? Leave it and move on)
 Use your notes to fill any gaps after step 1
 Use the mark scheme to fill in any remaining gaps.

1. Having gaps after step 1 is normal, that's why we are doing revision!

 If your notes don't help during step 2, they are not good enough! (Change your note taking method and try to understand the problem)
 If you don't understand why the mark scheme answer is correct, see Andy.

If you come to a complete dead-end, **STOP!** and speak to **Andy** asap.

Andy Higham - www.chemistrychimp.jimdofree.com

4	Table 2 shows so	ome data about the elements l	bromine and magnesium.
		Table 2	
	Element	Melting point / K	Boiling point / K
	Bromine	266	332
	Magnesium	923	1383
04	. 1 In terms of structu different from that greater temperatu	re and bonding explain why th of magnesium. Suggest why re range compared to bromin	he boiling point of bromine is magnesium is a liquid over a much e. [5 marks]

Question	Marking Guidance	Mark	Comments
	-		-
04.1	StructuresM1 Bromine is (simple) molecular / simple moleculesM2 Magnesium is metallic / consists of (positive) ions in a(sea) of delocalised electronsStrengthM3 Br2 has weak (van der Waals) forces between themolecules / weak IMFs	1 1 1	Chemical Error penalties If Br_2 (covalent) bonds broken lose M3 and M4 If eg Mg molecules or Mg ionic bonds lose M2 and M4
	 M4 so more energy is needed to overcome the Stronger (metallic) bonds or converse. The comparison could be direct or implied. Liquid range M5 Mg has a much greater liquid range because forces of attraction in liquid / molten metal are strong(er) OR converse argument for Br₂ 	1	Must refer to liquid range to score M5

Section A
Answer all questions in this section.
This question is about compounds that contain fluorine.
Sodium fluoride contains sodium ions (Na ⁺) and fluoride ions (F ⁻). Na ⁺ and F ⁻ have the same electron configuration.
Explain why a fluoride ion is larger than a sodium ion. [2 marks]
Explain, in terms of structure and bonding, why the melting point of sodium fluoride is high.
[2 marks]

0 1

1

0 1.

2

1

0

Turn over ►

Do not write outside the box

Question	Marking guidance	Additional Comments/Guidelines	Mark
01.1	Fluoride <u>ion</u> has (two) fewer protons/lower nuclear charge Weaker attraction between nucleus and (outer) electrons	Do not allow fluorine, but allow fluorine <u>ion</u> Any reference to different numbers of electrons in the ions loses M1 Allow answers in terms of sodium <u>ion</u> but must be explicit. Ignore references to atomic radius	1
01.2	(Electrostatic) forces of <u>attraction</u> between oppositely charged ions/Na ⁺ and F ⁻ Lots of energy needed to overcome/break forces	Mention of IMF, covalent, macromolecular, metallic, electronegativity of ions loses both marks Allow strong ionic bonding Allow strong forces/bonds of attraction (need to be broken)	1

14

MARK SCHEME – AS-LEVEL CHEMISTRY – 7404/2 – JUNE 2017

Question	Marking Guidance		Mark	Comments	
			_	-	
07.5	M1	cyclohexene : van der Waals' forces (between molecules)	1	Extended response	
	M2	cyclohexanol : hydrogen bonds (between molecules)	1	Maximum of 5 marks for answers which do not refer to the van der Waals forces or hydrogen bonds being between molecules in some	
	М3	phosphoric acid: hydrogen bonds (between molecules)	1		
	М4	idea that cyclobexene has weakest forces	1	M1 penalise reference to presence of other intermolecular forces	
				M1 allow vdW forces (on this occasion)	
	М5	separated by (simple / fractional) distillation	1	M1/2/3 penalise reference to breaking covalent bonds	
	M6	cyclohexene has lowest boiling point / boils off first	1	M2 & M3 ignore reference to van der Waals and/or (permanent) dipole-dipole forces	
				M2 allow use of term H bonds (on this occasion)	
				M4 allow converse argument	
				M4 allow converse argument	
				M4 & M6 – allow correct comparison of cyclohexene forces and boiling point to one of the other two compounds if only one of cyclohexanol or phosphoric acid discussed	

09	Chloroethene can be polymerised to form poly(chloroethene), commonly known as PVC. This polymer can be used to make pipes, window frames and electrical insulation. Plasticisers can be added to change the properties of PVC A section of poly(chloroethene) is shown
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
09.1	Chloroethene has a melting point of -154 °C All types of PVC melt at temperatures over 100 °C
	Explain why PVC melts at a higher temperature than chloroethene. [2 marks]
09.2	This structure shows a molecule that has been used as a plasticiser in PVC.
	Deduce the number of hydrogen atoms in this molecule.
	[1 mark]

09.3	Use your understanding of the properties of PVC to explain whether you expect to find a plasticiser in the PVC used to insulate electrical cables.	would [1 mark]
09.4	A section of the polymer poly(chloroprene), a synthetic rubber, is shown.	
	Draw the displayed formula for the repeating unit of poly(chloroprene).	[1 mark]
	Turn over for the next question	

Turn over ►

5

Question	Marking Guidance	Mark	Comments
09.1	M1 it / PVC is bigger/longer molecule / has more electrons / has bigger surface area / greater <i>M</i> _r	1	M1 and M2 independent of each other
	M2 it / PVC has stronger (van der Waals' / dipole-dipole) forces	1	CE = 0 if reference to hydrogen bonds or breaking of covalent bonds when substances are melted
	between molecules / intermolecular forces		Comparison must be implied in M1 or M2 to score 2 marks
			If there is no comparison at all, then 1 mark could score either for explaining that PVC has strong <u>intermolecular</u> forces due to being a big/long molecule / having many electrons / large surface area / large M_n or, for explaining that chloroethene has weak <u>intermolecular</u> forces due to being a small/short molecule / having few electrons / low surface area / low M_n

09.2	38	1	ignore additional words
------	----	---	-------------------------

09.3	Need both ideas that	1	penalise incorrect properties
	it is present AND		
	because PVC needs to be flexible / bendy		

09.4	Displayed structure required	1	ignore any bracket or n
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

0 4	This question is about pentan-2-ol and pent-1-ene.	Do not write outside the box
0 4.1	The boiling point of pentan-2-ol is 119 °C The boiling point of pent-1-ene is 30 °C Explain why pentan-2-ol has a higher boiling point than pent-1-ene. [3 marks]	I
		-
		-
		-
1 2	IB/M/Jun20/7404	/2

Question		Marking guidance		Additional Comments/Guidelines	Mark
04.1	M1 M2 M3	idea that pentan-2-ol has stronger intermolecular forces pent-1-ene has van der Waals' forces (only) pentan-2-ol (also) has hydrogen bonds	M1 Penal coval M2 M3	idea that hydrogen bonds are stronger than van der Waals' forces lise M1 for any reference to idea of breaking ent bonds allow London forces or temporary/induced dipole forces or vdW forces for van der Waals' forces Ignore reference to dipole-dipole forces in pentan-2-ol	1 1 1

box

04.4	The C–Br bond is polar.		Do not write outside the box
	Explain why CBr₄ is not a polar molecule.	[2 marks]	
04.5	Suggest, in terms of the intermolecular forces for each compound, why CBr $_4$ higher boiling point than CHBr $_3$	has a [3 marks]	
			10
	Turn over for the next question		

Question	Marking guidance	Additional Comments/Guidelines	Mark
04.1	$H = \begin{pmatrix} H & H \\ - & - & \delta^{-} \\ - & - & \delta^{+} \\ - & - & - & \delta^{-} \\ - & - & - & - \\ - & - & - & - & \delta^{-} \\ - & - & - & - & \delta^{-} \\ - & - & - & - & \delta^{-} \\ - & - & - & - & \delta^{-} \\ - & - & - & - & - \\ - & - & - & - & -$		
	M1 –lone pairs and partial charges (δ –, δ +, δ –) on atoms involved in the hydrogen bond M2 – dotted line between lone pair on N/O to correct H M3 – linear O–H····N / linear N–H···O	Ignore partial charges on C-H	1 1 (3 x AO2)

Question	Marking guidance	Additional Comments/Guidelines	Mark
04.2	The (relative) tendency of an atom to attract a pair of electrons/ the electrons/ electron density in a covlent bond	Allow Nucleus instead of atom Power of an atom to attract a bonding/shared pair of electrons Power of an atom to withdraw electron density from a covalent bond Not lone pair / element	1 (AO1)

Question	Marking guidance	Additional Comments/Guidelines	Mark
04.3	H and O	O-H	1 (AO2)

Question	Marking guidance	Additional Comments/Guidelines	Mark
04.4	M1 the molecule is completely symmetrical / the molecule is tetrahedral / there is an even distribution of electron density M2 the dipoles cancel out	Do not allow The polar bonds cancel out / no dipole moment / partial charges cancel	1 1 (2 x AO2)

Question	Marking guidance	Additional Comments/Guidelines	Mark
04.5	M1 CBr ₄ has van der Waals' forces between molecules M2 CHBr ₃ has van der Waals' forces and dipole-dipole intermolecular forces M3 The van der Waals' between CBr ₄ molecules are stronger than the	M3 cannot be awarded if mention of breaking bonds	1
	dipole-dipole and van der Waals' forces between CHBr ₃ (because it has a larger mass/more electrons/larger electron cloud) OR The intermolecular forces between CBr ₄ molecules are stronger than the intermolecular forces between CHBr ₃		1 (3 x AO2)