A' Level Chemistry
 Year 1

Unit 2: Amount Of Substance

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Year 1A' Level Chemi
Group II/ Group VII

Quizlet Classes

Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

$\mathbf{0}$	$\mathbf{6} \quad$ Copper can be produced from rock that contains CuFeS_{2}

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{1}$ Balance the equations for the two stages in this process.

$\ldots . . \mathrm{CuFeS}_{2}+\ldots . \mathrm{O}_{2}+\ldots . . \mathrm{SiO}_{2} \rightarrow \ldots . \mathrm{Cu}_{2} \mathrm{~S}+\ldots . . \mathrm{Cu}_{2} \mathrm{O}+\ldots . . \mathrm{SO}_{2}+\ldots . . \mathrm{FeSiO}_{3}$
$\ldots . . . \mathrm{Cu}_{2} \mathrm{~S}+\ldots . . \mathrm{Cu}_{2} \mathrm{O} \rightarrow \ldots . . \mathrm{Cu}+\ldots . . \mathrm{SO}_{2}$

| $\mathbf{0}$ | $\mathbf{6} .2$ | $\mathbf{2}$ Suggest two reasons why the sulfur dioxide by-product of this process is removed |
| :--- | :--- | :--- | from the exhaust gases.

Reason 1 \qquad
\qquad
\qquad

Reason 2 \qquad
\qquad
\qquad

Question 6 continues on the next page

$\mathbf{0}$	6	.
3	A passenger jet contains 4050 kg of copper wiring.	

A rock sample contains $1.25 \% \mathrm{CuFeS}_{2}$ by mass.
Calculate the mass, in tonnes, of rock needed to produce enough copper wire for a passenger jet. $\quad(1$ tonne $=1000 \mathrm{~kg}$)
\qquad tonnes

$\mathbf{0}$	$\mathbf{6} .4$
$\mathbf{4}$ Copper can also be produced by the reaction of carbon with copper(II) oxide	

$$
2 \mathrm{CuO}+\mathrm{C} \rightarrow 2 \mathrm{Cu}+\mathrm{CO}_{2}
$$

Calculate the percentage atom economy for the production of copper by this process.

Give your answer to the appropriate number of significant figures.
\qquad

Question	Marking Guidance	Mark	Additional Comments/Guidance

06.1	$4 \mathrm{CuFeS}_{2}+9^{1} / 2 \mathrm{O}_{2}+4 \mathrm{SiO}_{2} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{Cu}_{2} \mathrm{O}+7 \mathrm{SO}_{2}+4 \mathrm{FeSiO}_{3}$	1	Allow multiples
	$\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$	1	

	ANY TWO		
$-\quad$ Prevents acid rain (which damages buidlings/ecology)	1		
06.2	$-\quad$Toxic OR causes breathing problems Reduces waste product OR makes use of the waste OR improves atom economy OR Reduces need for sulfur mining OR used to produce sulphuric acid OR any named products	1	

Question	Marking Guidance	Mark	Additional Comments/Guidance

06.3	M1,M2,M3 are process marks		Alternative method
	M1 $\mathrm{Mol} \mathrm{Cu}=\frac{4050 \times 1000}{63.5}(=63780)$	1	$\mathrm{M} 1 \%$ of Cu in $\mathrm{CuFeS}_{2}=(63.5 / 183.5) \times 100=34.6 \%$
	M2 Mass $\mathrm{CuFeS}_{2}=(63780) \times 183.5\left(=1.17 \times 10^{7} \mathrm{~g}\right)$	1	M2 \% of Cu in the rock=(34.6/100) $\times 1.25=0.4325 \%$
	M3 Mass ore $=\left(1.17 \times 10^{7}\right) \times 100 / 1.25$	1	M3 mass of rock $=4050 \times 100 / 0.4325=936416 \mathrm{~kg}$
	M4 Mass ore = 936 tonnes (Allow 936-937)	1	M4 mass of rock in tonnes= 936 tonnes
			Notes $\overline{\mathrm{M} 1 \mathrm{~A}_{\mathrm{r}}} \mathrm{Cu}$ must be used
			M2 $\mathrm{Mr}_{\mathrm{r}} \mathrm{CuFeS}_{2}$ to have been used
			M3 Grossing up for the mass of rock
			M4 Final answer correct in tonnes

06.4	\% atom economy $={ }^{(2 \times 63.5)} / 171 \times 100$	1	
$=74.3 \%$ must be 3 sf	1		

$\mathbf{0}$	$\mathbf{2} \quad$ This question is about sodium fluoride (NaF).

Some toothpastes contain sodium fluoride.
The concentration of sodium fluoride can be expressed in parts per million (ppm). 1 ppm represents a concentration of 1 mg in every 1 kg of toothpaste.

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ A 1.00 g sample of toothpaste was found to contain $2.88 \times 10^{-5} \mathrm{~mol}$ of |
| :--- | :--- | :--- | sodium fluoride.

Calculate the concentration of sodium fluoride, in ppm, for the sample of toothpaste. Give your answer to 3 significant figures.

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$ Sodium fluoride is toxic in high concentrations.

Major health problems can occur if concentrations of sodium fluoride are greater than $3.19 \times 10^{-2} \mathrm{~g}$ per kilogram of body mass.

Deduce the maximum mass of sodium fluoride, in mg , that a 75.0 kg person could swallow without reaching the toxic concentration.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ The concentration of sodium fluoride in a prescription toothpaste is 2800 ppm . |
| :--- | :--- | :--- | :--- |

Use your answer to Question $\mathbf{0 2 . 2}$ to deduce the mass of toothpaste, in kg , that a 75.0 kg person could swallow without reaching the toxic concentration.

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{4}$ Identify the diagram in Figure $\mathbf{2}$ that shows the correct relative sizes of the ions in |
| :--- | :--- | :--- | sodium fluoride. Justify your answer.

Figure 2

A

B

C

Diagram
Justification \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 3 | A student heated a solid sample of $\mathrm{Na}_{2} \mathrm{CO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ for 1 minute to remove water and |
| :--- | :--- | :--- | determine a value for \boldsymbol{x}

Figure 3 shows the apparatus used. Table 1 shows the results recorded.
Figure 3

Table 1

Mass of empty evaporating basin	24.35 g
Mass of evaporating basin and solid before heating	25.47 g
Mass of evaporating basin and solid after heating for 1 minute	24.92 g

| 0 | 3 | 1 | Use the data in Table 1 to calculate a value for x in the formula $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{xH}_{2} \mathrm{O}$ |
| :--- | :--- | :--- | :--- | Give your answer to 2 decimal places.

$\mathbf{0}$	$\mathbf{3} .2$	$\mathbf{2}$ The correct value for x is 10

Suggest a reason for the difference between the experimental value for x and the correct value.
(If you were unable to calculate an experimental value for \boldsymbol{x} assume it was 8.05. This is not the correct experimental value.)
\qquad
\qquad
\qquad

| 0 | 3 | 3 |
| :--- | :--- | :--- | more accurate value for \boldsymbol{x} Justify your answer.

Suggestion \qquad
\qquad
\qquad
\qquad
Justification \qquad
\qquad
\qquad
\qquad

Turn over for the next question

Qu	Marking Guidance	Additional Comments	Mark
2.1	$M_{r} \mathrm{NaF}=42(.0)$ Mass NaF in $1 \mathrm{~g}=2.88 \times 10^{-5} \times 42.0\left(=1.210(1.2096) \times 10^{-3} \mathrm{~g}\right)$ Mass NaF in $1 \mathrm{~kg}=1.210(1.2096) \mathrm{g}$ (Mass in $\mathrm{mg}=1210(1209.6) \mathrm{mg}$) Concentration of $\mathrm{NaF}=\underline{1210}$ (ppm)	Incorrect M_{r} loses M1 \& M4 $\mathrm{M} 3=\mathrm{M} 2 \times 1000(\mathrm{~g})$ Units, if given, must match answer Allow $1.21 \times 10^{3} \mathrm{ppm}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
2.2	$\begin{aligned} \text { Toxic mass } & =3.19 \times 10^{-2} \times 75 \times 1000 \\ & =2390 \mathrm{mg} \end{aligned}$	Allow 2393	1
2.3	$\begin{aligned} \text { Mass of toothpaste needed } & =\frac{2390}{2800} \\ & =0.854 \mathrm{~kg} \end{aligned}$	Mark consequential to Q2. 2 Q2.2 $\div 2800$ (to at least 2 sig fig) Allow $0.85-0.86 \mathrm{~kg}$	1
2.4	B Both Na^{+}and F^{-}same electron arrangement $\left(1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}\right)$ or isoelectronic Sodium (ion) has more protons so attracts (outer) electrons closer / Sodium (ion) has more protons so stronger attractions for (outer) electrons	If not B, allow M2 only If blank, read on. Electronegativity, molecules or IMF = CE, M1 only Ignore shielding, higher charge density, atomic radius If reference to fluorine rather than fluoride, then penalise 1 mark only	1

Qu	Marking Guidance	Additional Comments	Mark
3.1	M1: Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.57 \mathrm{~g}$ AND Mass $\mathrm{H}_{2} \mathrm{O}=0.55 \mathrm{~g}$ M2: $\mathrm{Mol} \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.57}{106}$ AND Mol $\mathrm{H}_{2} \mathrm{O}=\frac{0.55}{18}$ M3: $\quad=\underline{0.0054}: \underline{0.0306}$ M4: \div by smallest $=1 \quad: 5.682$ M5: Value of $x=5.68$ (2dp) OR M1: Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.57 \mathrm{~g}$ AND Mass $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}=1.12 \mathrm{~g}$ M2: Moles anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.57}{106}=5.377 \times 10^{-3}$ M3: M_{r} of hydrated $\mathrm{Na}_{2} \mathrm{CO}_{3}=1.12 / 5.377 \times 10^{-3}$ $=208.3$ M4: M_{r} of $\mathrm{x}_{2} \mathrm{O}=102.3$ M5: Value of $x=5.68$ (2dp)	If incorrect masses other than AE, lose M1 \& M3 M2 = process M3 = these values only (at least 2sf) M4 = process mark Allow 5.67-5.74 Allow 5.67-5.74	1 1 1 1 1 OR 1 1 1 1 1
3.2	Failure to drive off all the water OR Failure to heat for long enough OR Not heated to constant mass	Allow evaporate instead of drive off Ignore incomplete reaction	1
3.3	Heat to constant mass / heat for longer / use a smaller mass You can be sure all / more of the water has been driven off	Ignore incomplete reaction M2 dependent on M1	

A student completes an experiment to determine the percentage by mass of sodium chloride in a mixture of sodium chloride and sodium iodide.

The student uses this method.

- 600 mg of the mixture are dissolved in water to form a solution.
- An excess of aqueous silver nitrate is added to the solution. This forms a precipitate containing silver chloride and silver iodide.
- Excess dilute ammonia solution is then added to the precipitate. The silver chloride dissolves.
- The silver iodide is filtered off from the solution, and is then washed and dried.

The mass of the silver iodide obtained is 315 mg

0	$\mathbf{7}$	$\mathbf{3}$	Silver nitrate is added to the solution.

Suggest why an excess is used.
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{4}$ Calculate the amount, in moles, of silver iodide obtained.

$M_{\mathrm{r}}(\mathrm{Ag})=234.8$
\qquad mol

| 0 | $\mathbf{7}$ | $\mathbf{5}$ Calculate, using your answer to Question 07.4, the mass, in grams, of sodium iodide |
| :--- | :--- | :--- | :--- | in the mixture.

$M_{r}(\mathrm{NaI})=149.9$

Mass of sodium iodide \qquad g

| 0 | 7 | 6 | $C a l c u l a t e, ~ u s i n g ~ y o u r ~ a n s w e r ~ t o ~ Q u e s t i o n ~ 07.5, ~ t h e ~ p e r c e n t a g e ~ b y ~ m a s s ~ o f ~$ |
| :--- | :--- | :--- | :--- | sodium chloride in the mixture.

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.3	To ensure that all the halide ions (chloride and iodide) are removed from the solution / to ensure that all the halide ions precipitate out of solution	Must refer either to both halide ions, or to all halide ions.	1
07.4	$n(\mathrm{AgI})=0.315 / 234.8=1.34 \times 10^{-3} \mathrm{moles}$		1
07.5	$\begin{aligned} & \mathrm{n}(\mathrm{NaI})=1.34 \times 10^{-3} \\ & \text { mass of Nal }=1.34 \times 10^{-3} \times 149.9=0.201 \mathrm{~g} \end{aligned}$	Ans (07.4) $\times 149.9$	1
07.6	mass of $\mathrm{NaCl}=600-201=399 \mathrm{mg}$ $\begin{aligned} \% \mathrm{NaCl}=399 / 600 \times 100= & 66.5 \% \\ & (66.5-68.3) \end{aligned}$	$\begin{aligned} & 600-(\text { Ans } 07.5 \times 1000) \\ & \text { M1/600 } \times 100 \\ & \text { OR } \\ & (\text { Ans } 07.5 \times 1000) / 600 \times 100 \\ & 100-\text { M1 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

When an aqueous solution of ethanoic acid reacts with magnesium, the progress of reaction can be followed using the equipment shown in Figure 5 to measure the volume of hydrogen produced.

Figure 5

Figure 6 shows how the volume of hydrogen produced varies with time when 396 mg of magnesium are added to $30.0 \mathrm{~cm}^{3}$ of $0.600 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid.

Figure 6

Volume of hydrogen

0	8	$\mathbf{1}$

$$
2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{Mg}(\mathrm{~s}) \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

With the aid of calculations, show that the magnesium is in excess in this reaction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 solution with all other conditions the same. The magnesium was still in excess.

Sketch a line on Figure 6 to show how the volume of hydrogen produced varies with time in this second experiment.

Space for working.

Question	Marking Guidance	Mark	Comments
08.1	Method 1 M1 Moles of $\mathrm{Mg}=0.396 / 24.3=0.0163$ M2 Moles of $\mathrm{CH}_{3} \mathrm{COOH}=0.600 \times 30.0 / 1000=0.018$ M3 Mark for showing Mg is in excess: either 0.018 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ reacts with 0.009 mol of Mg OR 0.0163 mol of Mg reacts with 0.0326 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ OR 0.0073 mol of Mg is in excess Method 2 M1 Moles of $\mathrm{CH}_{3} \mathrm{COOH}=0.600 \times 30.0 / 1000=0.018$ M2 Moles of Mg that would react with this $=0.009$ M3 Mass of Mg needed $=24.3 \times 0.009=0.219 \mathrm{~g}$ which is less than 0.396 g OR Moles of $\mathrm{Mg}=0.0163$ which is more than 0.009 required Method 3 M1 Moles of $\mathrm{Mg}=0.396 / 24.3=0.0163$ M2 Moles of $\mathrm{CH}_{3} \mathrm{COOH}$ that would react with this $=0.0326$ M3 Volume of $\mathrm{CH}_{3} \mathrm{COOH}$ needed $=0.0326 / 0.60=0.0543$ $\mathrm{dm}^{3}\left(54.3 \mathrm{~cm}^{3}\right)$ which is more than $0.030 \mathrm{dm}^{3}\left(30 \mathrm{~cm}^{3}\right)$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow working throughout to 2sf If candidate gets 16.3 mol (as not converted mg to g) in method 1 or 3 then can only score 1 mark maximum (M2) Accept other valid calculations that show the Mg is in excess

08.2
M1 Line starts at origin and is steeper
M2 (moles $\mathrm{CH}_{3} \mathrm{COOH}=0.800 \times 20 / 1000=0.016$) 1

M2 for line on 8th line on grid (original on 9th line) - allow some leniency so long as clear it ends at (or very close to) the $8^{\text {th }}$ line; and line does not significantly wobble
 carbon.

Calculate the empirical formula of \mathbf{Y}.
Use this empirical formula and the relative molecular mass of $\mathbf{Y}\left(M_{\mathrm{r}}=86.0\right)$ to calculate the molecular formula of \mathbf{Y}.
[4 marks]

Empirical formula

Molecular formula

02.2	M1	dividing \%s by relative atomic masses	1
	M2	converting (C:H $6.975: 16.3$) to $3: 7$	1
	M3	empirical formula $=\mathrm{C}_{3} \mathrm{H}_{7}$	
M4	molecular formula $=\mathrm{C}_{6} \mathrm{H}_{14}$	$\mathrm{H}=16.3 / 1(.0)$	

M1 \& M2 are for working
M3 for $\mathrm{C}_{3} \mathrm{H}_{7}$ only, marked independently
M4 for $\mathrm{C}_{6} \mathrm{H}_{14}$ only, marked independently (ignore additional correct structures)

Formulae with no working cannot score M1 or M2

Alternative method:
M1 working that shows 83.7% of 86 is 72
M2 idea of $72 / 12$ gives 6 C atoms

Alternative method:
working that shows that $\mathrm{C}_{6} \mathrm{H}_{14}\left(\right.$ or $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)$ contains $83.7 \% \mathrm{C}$ scores M1 \& M2

| 0 | 5 | 1 |
| :--- | :--- | :--- | A hydrocarbon contains 87.8% by mass of carbon and has a relative molecular mass $\left(M_{r}\right)$ of 82.0

The hydrocarbon decolourises bromine water.
Determine the empirical and molecular formulae of the hydrocarbon.
Suggest two possible structures for the hydrocarbon.
Name the type of reaction taking place when bromine water reacts with the hydrocarbon.
\qquad

Question	Marking Guidance	Mark	Comments
5.1	M1 C:H = 7.3: 12.2 seen M2 (converting C:H 7.3:12.2 to 3:5) to give empirical formula $=\mathrm{C}_{3} \mathrm{H}_{5}$ M3 molecular formula $=\mathrm{C}_{6} \mathrm{H}_{10}$ M4,5 two possible structures of $\mathrm{C}_{6} \mathrm{H}_{10}$ (in any structural form) cyclic compounds with $6 / 5 / 4 / 3$-membered C ring with one double bond, e.g. or any dienes with with 6 C atoms, or a molecule with a triple bond M6 (electrophilic) addition	1 1 2	Extended response: M1 is for working of some sort leading to the formulae. If $\mathrm{C}_{3} \mathrm{H}_{5}$ and $\mathrm{C}_{6} \mathrm{H}_{10}$ are both shown but it is not indicated which formula is which; or the formulas are stated the wrong way round, then allow 1 mark for M2 and M3 combined; if both correct formulas are given with only one stated correctly to be the empirical/molecular formula, then allow M2 and M3. M4 and M5 ignore names given in addition to structures Credit M4 and M5 for correct names if no structures drawn Alternative route to $\mathrm{C}_{6} \mathrm{H}_{10}$ that could gain credit M1 $82 / 12$ gives/suggests 6 C atoms M2 molecular formula $=\mathrm{C}_{6} \mathrm{H}_{10}$ M3 empirical formula $=\mathrm{C}_{3} \mathrm{H}_{5}$ Alternative route to $\mathrm{C}_{6} \mathrm{H}_{10}$ that could gain credit M1 $82 \times 0.878=72,(72 / 12)=6 \mathrm{C}$ atoms M2 molecular formula $=\mathrm{C}_{6} \mathrm{H}_{10}$ M3 empirical formula $=\mathrm{C}_{3} \mathrm{H}_{5}$ Apply list principle to structures in M4 and M5 M6 penalise nucleophilic addition; ignore bromination

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{3}$ Sulfur dioxide is produced in the combustion of fossil fuels. The total emissions |
| :--- | :--- | :--- | of sulfur dioxide in the UK have fallen dramatically since 1970.

Sulfur dioxide is now removed from the flue gases in power stations by reaction with calcium oxide.

$$
\mathrm{CaO}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3}
$$

In 1970, the total UK emissions of sulfur dioxide were 6.49 million tonnes (1 tonne $=1000 \mathrm{~kg}$).

Calculate the mass, in kilograms, of calcium oxide needed to react with this mass of sulfur dioxide.

Give your answer in standard form.
\qquad kg

Question	Marking guidance	Additional Comments/Guidelines	Mark
04.3	M1 moles $\mathrm{SO}_{2}=\frac{6490000 \times 10^{6}}{64.1}\left(=\frac{6.49 \times 10^{12}}{64.1}=1.012 \times 10^{11}\right)$ M2 mass $\mathrm{CaO}=\left(\frac{1.012 \times 10^{11} \times 56.1}{1000}\right)=5.68 \times 10^{9}(\mathrm{~kg})$	M2 must be in standard form Correct answer in standard form scores 2 marks (allow $5.6-5.7 \times 10^{9}$). Answer to at least 2 sf . Correct answer in non-standard form scores 1 mark Answers that are $5.6-5.7 \times 10^{n}$ score 1 mark For other answers, allow ECF from M1 to M2 (but answer must be in standard form for M2 to score) Alternative M1 mass $\mathrm{CaO}=\frac{6490000 \times 10^{6}}{64.1} \times 56.1$ $=5.68$ million tonnes M2 $\quad 5.68 \times 10^{9}(\mathrm{~kg})$ (7.4.. $\times 10^{9}$ would score 1 mark due to use of $\frac{64.1}{56.1}$)	1 1

| 0 | 7 | Propanedioic acid contains two carboxylic acid groups. It is a solid organic acid that is |
| :--- | :--- | :--- | soluble in water.

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{1}$ Draw the skeletal formula of propanedioic acid. |
| :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\mathbf{0} & \mathbf{7} & \mathbf{2} \text { Describe how to prepare } 250 \mathrm{~cm}^{3} \text { of an aqueous standard solution of }\end{array}$ propanedioic acid containing an accurately measured mass of the acid. Include essential practical details in your answer.
\qquad

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{3}$ Calculate the mass, in mg , of propanedioic acid $\left(M_{\mathrm{r}}=104.0\right)$ needed to prepare |
| :--- | :--- | :--- | $250 \mathrm{~cm}^{3}$ of a $0.00500 \mathrm{~mol} \mathrm{dm}^{-3}$ solution.

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.1		Must be a skeletal formula Need to show the H atoms of OH groups	1

Question Marking guidance Additional Comments/Guidelines Mark M1 moles of acid $=0.00500 \times \frac{250}{1000} \quad(=0.00125)$ 1 07.3 M2 mass of acid $(=0.00125 \times 104(.0)=0.130 \mathrm{~g})=130(\mathrm{mg})$ 130 scores 2 marks Final answer must be at least 2 sf Allow ECF from $\mathbf{M 1}$ to M2 $0.13(0)$ scores 1 mark $2080(\mathrm{mg})$ scores 1 mark 1

| 0 | 8 | Propanal can be prepared by the oxidation of propan-1-ol with |
| :--- | :--- | :--- | acidified potassium dichromate(VI).

An ionic equation for this reaction is

$$
3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ Calculate the minimum volume, in cm^{3}, of |
| :--- | :--- | :--- | $0.40 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium dichromate(VI) solution needed to oxidise $6.0 \mathrm{~cm}^{3}$ of propan-1-ol to propanal.

M_{r} of propan-1-ol $=60.0$
Density of propan-1-ol $=0.80 \mathrm{~g} \mathrm{~cm}^{-3}$

0	$\mathbf{8}$.	$\mathbf{2}$ The reaction is done in a pear-shaped flask.

Complete the diagram to show the assembled apparatus needed to prepare propanal from propan-1-ol in this way.

Label the diagram.

Question	Marking guidance	Additional Comments/Guidelines	Mark

08.1	M1 moles of propan-1-ol $=\frac{6.0 \times 0.80}{60.0} \quad(=0.080)$ M2 moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\frac{M 1}{3} \quad(=0.0267)$ M3 volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\frac{M 2}{0.40} \times 1000=67\left(\mathrm{~cm}^{3}\right)$ (allow 66.666.... to 68)	$67 \mathrm{~cm}^{3}$ scores 3 marks allow ECF for M2 and M3 final answer to at least 2 sf $200\left(\mathrm{~cm}^{3}\right)$ scores 2 marks; $66.6\left(\mathrm{~cm}^{3}\right)$ is outside range and scores 2 marks; $66.6\left(\mathrm{~cm}^{3}\right)$ (i.e. 66.6 dot scores 3 marks)	1 1 1
08.2	M1 an attempt to draw apparatus that is clearly for (fractional) distillation M2 suitable drawing of distillation apparatus with condenser attached to side of distillation head - condenser must have outer tube for water that is sealed at the ends but have two openings for water in/out (that are open) - condenser must have downwards slope - condenser must be open at each end - as this is a cross-section, there should be a continuous flow through the diagram from the flask to the end of the open condenser (there should be no lines drawn across implying a seal of any sort) - there must be no gaps at joints between apparatus where vapour could escape - there must be some opening to the system at the collection end M3 condenser labelled including labels for water in and water out (water must come in at lower end)	On this occasion, the apparatus does not need a thermometer or a collection container Ignore any fractionating column IN M1 and M2 between the flask and condenser. For M3, if water in and out clearly stated, ignore direction of any arrows drawn. Allow 'condensing tube' or 'condensing column' or similar for name of condenser. If a reflux diagram is drawn (any diagram with a condenser attached vertically into the flask is a reflux set up, even with a downwards tube from the top of the condenser): - cannot score M1 or M2 - could score M3 for condenser labelled including labels for water in and water out (water must come in at the lower end)	1 1

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ | Ethanedioic acid reacts with an excess of sodium hydroxide to form |
| :--- | :--- | :--- | :--- | sodium ethanedioate.

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

A student mixes $10.0 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanedioic acid with $50.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.

Show that the sodium hydroxide is in excess.
Calculate the mass, in mg , of sodium ethanedioate that can be formed in this reaction.
\qquad mg

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.3	M1 amount of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=0.400 \times \frac{10}{1000}=0.004 \mathrm{~mol}$		1
	NaOH in excess	$\mathbf{N a O H}$ in excess: allow ECF from M1/2 to M3 as long as the amounts do have NaOH in excess	1
	M2 amount of $\mathrm{NaOH}=0.200 \times \frac{50}{1000}=0.010 \mathrm{~mol}$		1
	M3 amount of NaOH needed for reaction $=0.008 \mathrm{~mol}$ or amount of left over NaOH needed for reaction $=0.002 \mathrm{~mol}$ or 0.005 mol of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ needed for all NaOH to react	M3 Allow any reasoned justification using moles to show that NaOH is in excess (it must take into account the 2:1 ratio in some way)	
	Yield	Yield: allow ECF from M1 to M4, and from M4 to M5	1
	M4 amount of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ formed $=0.004 \mathrm{~mol}$	536 mg scores M1,4,5	1
	M5 mass of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=134.0 \times 0.004=0.536 \mathrm{~g}=536 \mathrm{mg}$	0.536 g scores M1,4	

$\mathbf{0}$	$\mathbf{6} \quad$ Calcium sulfide reacts with calcium sulfate as shown.
	$\mathrm{CaS}+3 \mathrm{CaSO}_{4} \rightarrow 4 \mathrm{CaO}+4 \mathrm{SO}_{2}$

2.50 g of calcium sulfide are heated with 9.85 g of calcium sulfate until there is no further reaction.

Show that calcium sulfate is the limiting reagent in this reaction.
Calculate the mass, in g , of sulfur dioxide formed.
$M_{\mathrm{r}}(\mathrm{CaS})=72.2$
$M_{r}\left(\mathrm{CaSO}_{4}\right)=136.2$
\qquad g

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark
06	amount of $\mathrm{CaS}=\frac{2.50}{72.2}=0.0346 \mathrm{~mol}$ amount of $\mathrm{CaSO}_{4}=\frac{9.85}{136.2}=0.0723 \mathrm{~mol}$ 3 mol of CaSO_{4} needed for each mol of CaS , and $\mathrm{n}\left(\mathrm{CaSO}_{4}\right)$ is not $3 \times \mathrm{n}(\mathrm{CaO})$ (so CaSO_{4} is the limiting reagent) $\mathrm{n}\left(\mathrm{SO}_{2}\right)=\mathrm{n}\left(\mathrm{CaSO}_{4}\right) \times \frac{4}{3}=0.0964 \mathrm{~mol}$ $\text { mass of } \mathrm{SO}_{2}=\mathrm{n}\left(\mathrm{SO}_{2}\right) \times 64.1=6.18 \mathrm{~g}$	M1: amount of CaS M2: amount of CaSO_{4} M3: limiting reagent justification M4: moles of $\mathrm{CaSO}_{4} \times 4 / 3$ M5: M4 $\times 64.1$ If CaS used as limiting reagent then allow M4 and M5 ecf. Must look for M1 and M3	

Another student completes the experiment using apparatus that is set up correctly.

| $\mathbf{0}$ | $\mathbf{3} .2$ | 2 |
| :--- | :--- | :--- | acidified potassium dichromate(VI).

The student obtains 0.954 g of propanone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$.
Calculate the percentage yield of propanone in this experiment.
Give your answer to the appropriate number of significant figures.
Density of propan-2-ol $=0.786 \mathrm{~g} \mathrm{~cm}^{-3}$

Percentage yield

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.2	M1 mass of propan-2-ol $=2.0 \times 0.786(=1.572 \mathrm{~g}$ to at least 2sf) M2 amount of propan-2-ol $=\frac{1.572}{60.0} \quad(=0.0262$ to at least 2 sf$)$ mol M3 mass of propanone expected $=0.0262 \times 58.0(=1.52 \mathrm{~g}$ to at least 2sf) M4 $\%$ yield $=\left(\frac{0.954}{1.52} \times 100\right)=63 \%(2$ sf only $)$	Alternative for M3/4 M3 amount of propanone formed $=\frac{0.954}{58.0} \quad(=0.0164)$ mol M4 $\%$ yield $=\left(\frac{0.0164}{0.0262} \times 100\right)=63 \%(2$ sf only $)$ Allow ECF at each step	1 1 1 1

