A' Level Chemistry
 Year 1

Unit 2: AOS Titrations

Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.

Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes

Keywords \& Definitions
Key Concepts
Application
Key Skills

Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.

1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.

3 This question is about a white solid, MHCO_{3}, that dissolves in water and reacts with hydrochloric acid to give a salt.

$$
\mathrm{MHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{MCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

A student was asked to design an experiment to determine a value for the M_{r} of MHCO_{3}. The student dissolved 1464 mg of MHCO_{3} in water and made the solution up to $250 \mathrm{~cm}^{3}$.
$25.0 \mathrm{~cm}^{3}$ samples of the solution were titrated with $0.102 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid. The results are shown in Table 1.

Table 1

	Rough	$\mathbf{1}$	$\mathbf{2}$	3
Initial burette reading $/ \mathbf{c m}^{3}$	0.00	10.00	19.50	29.25
Final burette reading $/ \mathbf{c m}^{3}$	10.00	19.50	29.25	38.90
Titre $/ \mathbf{c m}^{\mathbf{3}}$	10.00	9.50	9.75	9.65

0 3 . 1 Calculate the mean titre and use this to determine the amount, in moles, of HCl that reacted with $25.0 \mathrm{~cm}^{3}$ of the MHCO_{3} solution.
\qquad
\qquad
\qquad
\qquad
\qquad
 Then calculate the experimental value for the M_{r} of MHCO_{3}.
Give your answer to the appropriate number of significant figures.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ The student identified use of the burette as the largest source of uncertainty in the |
| :--- | :--- | :--- | experiment.

Using the same apparatus, suggest how the procedure could be improved to reduce the percentage uncertainty in using the burette.

Justify your suggested improvement.
[2 marks]
Suggestion
\qquad
Justification \qquad
\qquad
\qquad

0 3. 4 Another student is required to make up $250 \mathrm{~cm}^{3}$ of an aqueous solution that contains a known mass of MHCO_{3}. The student is provided with a sample bottle containing the MHCO_{3}.

Describe the method, including apparatus and practical details, that the student should use to prepare the solution.
\qquad

More answer space is available on page 8
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Question	Marking Guidance	Mark	Comments
03.1	Selects correct titres $\begin{aligned} \text { mean titre } & =\frac{9.75+9.65}{2} \\ & =9.7(0) \mathrm{cm}^{3} \\ \mathrm{~mol} \mathrm{HCL} & =0.102 \times{ }^{9.70} / 1000=9.89 \times 10^{-4} \end{aligned}$ (allow $9.9 \times 10-4$ for M3 but check not via 4 titres in which case only 1 mark)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	If 3 or more titres used them MAX 1 for conseq M3 Calculates mean Calculates mol (working or result gains credit) 9.92×10^{-4} scores 1 if all 4 titres used 9.83×10^{-4} scores 1 if titres 1,2 , and 3 used
03.2	$\begin{gathered} \mathrm{mol} \mathrm{MHCO}_{3}=\text { ANS } 3.1 \times 10\left(=9.89 \times 10^{-3}\right) \\ \mathrm{Mr}=\frac{1464 / 1000}{M 1} \\ \mathrm{Mr}=148(3 \mathrm{sf}) \end{gathered}$	1 1 1	Use ecf if wrong mean calculated above Allow ecf following wrong mass conversion
03.3	Suggestion: Use a larger mass of solid OR use a more concentrated solution of $\mathrm{MHCO}_{3} \mathrm{OR}$ less concentrated / more dilute solution of HCl OR more MHCO_{3} Justification: So a larger titre/reading will be needed OR larger volume of HCl	1 1	Cannot score justification mark unless suggestion correct, but suggestion could be after justification Assume reference to the solution means the MHCO_{3}

Question	Marking Guidance	Mark	Comments
03.4	This question is marked using levels of response. Level 3 - Must use volumetric flask to access level 3 Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3. 6 marks - All stages are covered and the description of each stage is complete 5 marks - all stages are covered but up to 2 omissions/errors from different stages. If 2 omissions/errors from same stage only level 2 possible Level 2 Answer is mainly coherent and shows progression from stage 1 to stage 3 4 marks - All stages are covered but 3 omissions/errors 3 marks - all stages are attempted Level 1 Answer includes isolated statements but these are not presented in a logical order or show confused reasoning. 2 marks - 2 stages attempted 1 mark - 1 stage attempted Level 0 0 marks Insufficient correct chemistry to gain a mark.	6	Indicative Chemistry content Stage 1: transfers known mass of solid a) Weigh the sample bottle containing the solid on a (2 dp) balance b) Transfer to beaker* and reweigh sample bottle c) Record the difference in mass Or d) Place beaker* on balance and tare e) Transfer solid into beaker f) Record mass Or g) Known mass provided h) Transfers (known) mass into beaker* i) Wash all remaining solid from sample bottle into beaker Allow use of weighing boat *Allow other suitable glassware including volumetric flask Stage 2: Dissolves in water a) Add distilled / deionised water b) Stir (with a glass rod) or swirl c) Until all solid has dissolved Stage 3: Transfer, washing and agitation a) Transfer to volumetric / graduated flask. Allow if a clear description/diagram given eg long necked flask with $250 \mathrm{~cm}^{3}$ mark b) With washings c) Make up to $250 \mathrm{~cm}^{3} /$ mark with water d) Shakes/inverts/mixes

| $\mathbf{0}$ | $\mathbf{6} \quad$ A student does an investigation to determine the relative formula mass, M_{r}, of a |
| :--- | :--- | :--- | solid unknown diprotic acid, $\mathrm{H}_{2} \mathrm{~A}$

$$
\mathrm{H}_{2} \mathrm{~A}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{~A}+2 \mathrm{H}_{2} \mathrm{O}
$$

- $250 \mathrm{~cm}^{3}$ of aqueous solution are prepared using 1300 mg of $\mathrm{H}_{2} \mathrm{~A}$
- A pipette is used to add $25.0 \mathrm{~cm}^{3}$ of $0.112 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide to a conical flask.
- This aqueous sodium hydroxide is titrated with the acid solution.

The titration results are shown in Table 3.
Table 3

	Rough	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final volume $/ \mathbf{c m}^{\mathbf{3}}$	27.35	26.75	38.90	35.70
Initial volume $/ \mathbf{c m}^{3}$	0.00	0.35	12.15	9.20
Titre $/ \mathbf{c m}^{3}$	27.35	26.40	26.75	26.50

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{1}$	Use the results to calculate the M_{r} of $\mathrm{H}_{2} \mathrm{~A}$

\qquad

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{2}$ The uncertainty in using the pipette in this experiment is $\pm 0.06 \mathrm{~cm}^{3} \mathrm{C}$

Calculate the percentage uncertainty in using the pipette.
\% uncertainty $\quad\left[\begin{array}{l}\text { [1 mark] } \\ \end{array}\right.$

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{3}$ Before adding the solution from the burette in the rough titration, there was an |
| :--- | :--- | :--- | :--- | :--- | air bubble below the tap.

At the end of this titration the air bubble was not there.

Explain why this air bubble increases the final burette reading of the rough titration.
\qquad
\qquad
\qquad

| 0 | 6 | 4 |
| :--- | :--- | :--- | distilled water.

Suggest why this washing does not give an incorrect result.
\qquad

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark
06.1	$\begin{aligned} & \text { Average titre }=26.45 \mathrm{~cm}^{3} \\ & \mathrm{n}(\mathrm{NaOH})=(25 \times 0.112 / 1000)=2.80 \times 10^{-3} \mathrm{~mol} \\ & \mathrm{n}(\text { acid in titre })=2.80 \times 10^{-3} / 2=1.40 \times 10^{-3} \mathrm{~mol} \\ & \mathrm{n}\left(\text { acid in } 250 \mathrm{~cm}^{3}\right)=1.40 \times 10^{-3} \times 250 / 26.45=0.0132 \mathrm{~mol} \\ & M_{\mathrm{r}}=\text { mass } / \text { moles }=1.300 / 0.0132=98.2-98.5 \end{aligned}$	$\begin{aligned} & M 1=\text { average of concordant titres } \\ & M 2-\text { this value only } \\ & M 3=M 2 / 2 \\ & M 4=M 3 \times 250 / M 1 \\ & M 5=(1.300 / M 4)=\text { answer } \\ & M r \text { must be given to at least } 1 d p \\ & \text { Alternatives: } \\ & 98.6-\text { scores } 4 \\ & 92.9-\text { scores } 4 \\ & 87.8 \text { - scores } 3 \\ & 49.3 \text { - scores } 3 \\ & 49.1 \text { - scores } 4 \end{aligned}$	
06.2	\% uncertainty $=0.06 / 25.0 \times 100=0.24 \%$		1
06.3	Some solution/acid replaces air bubble / Solution/acid fills below the tap / Air bubble takes up volume that would be filled by solution/acid	Score for the idea that: Acid/solution replaces air/bubble/fills jet space Allow acid/solution fills the bubble/gap 'The final reading is higher than the volume added' is not enough.	1
06.4	Does not react (with the alkali) / does not change the number of moles (of alkali)	Allow water is a product / water is not a reagent	1

$\mathbf{0}$	2	This question is about a titration.

A student dissolves an unknown mass of sodium hydroxide in water to make $200 \mathrm{~cm}^{3}$ of an aqueous solution.

A $25.0 \mathrm{~cm}^{3}$ sample of this sodium hydroxide solution is placed in a conical flask and is titrated with $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid.

The equation for this reaction is shown.

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Table 1 shows the results of the titrations.
Table 1

Titration	Rough	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final reading $/ \mathbf{c m}^{\mathbf{3}}$	20.75	40.35	21.05	40.60
Initial reading $/ \mathbf{c m}^{\mathbf{3}}$	0.00	20.75	1.20	21.05
Titre $/ \mathbf{c m}^{\mathbf{3}}$	20.75	19.60	19.85	19.55

\qquad g

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ The student uses a funnel to fill the burette with sulfuric acid before starting the |
| :--- | :--- | :--- | :--- | titration. After filling, the student forgets to remove the funnel from the top of the burette.

Suggest why this might affect the titre volume recorded.
\qquad
\qquad
\qquad

0	2	3
3	State one advantage of using a conical flask rather than a beaker for the titration.	

\qquad
\qquad

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark

02.1	$\begin{aligned} \text { M1 Volume of } \mathrm{H}_{2} \mathrm{SO}_{4} & =(19.60+19.55) / 2= \\ & =\left(19.575 \mathrm{~cm}^{3} / 19.58 \mathrm{~cm}^{3}\right) \end{aligned}$	M1 = calculation of mean titre	5
		$\mathrm{M} 2=\mathrm{M} 1 \times 10^{-3} \times 0.150$	
	M 2 Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ concentration x volume	$\mathrm{M} 3=\mathrm{M} 2 \times 2$	
	$=0.150 \times(19.575 / 1000)$	$\mathrm{M} 4=\mathrm{M} 3 \times 8$	
	$\left(=2.936 \times 10^{-3} \mathrm{~mol}\right)$	$\mathrm{M} 5=1.879 \mathrm{~g}$	
	M3 Moles of NaOH in $25 \mathrm{~cm}^{3}=2.936 \times 10^{-3} \times 2=\left(5.87 \times 10^{-3} \mathrm{~mol}\right)$ M4 Moles of NaOH in original $200 \mathrm{~cm}^{3}$ sample $=5.87 \times 10^{-3} \times 8$	Allow correct alternative approaches	
	$(=0.04698 \mathrm{~mol})$		
	M5 Mass of $\mathrm{NaOH}=\mathrm{Mr} \times$ moles $\quad=40.0 \times 0.04698$ $=1.88 \mathrm{~g}(1.9 \mathrm{~g})$		

02.2	Additional drops of solution could have entered the burette from the funnel, (making the value on the burette lower).	Must imply that solution from funnel drips into burette	1
02.3	Less chance of splashing/losing any solution using a conical flask (when swirling)	Allow easier to swirl	1

| $\mathbf{0}$ | $\mathbf{5}$ Ethanedioic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ is a diprotic acid. Beekeepers use a solution of this |
| :--- | :--- | acid as a pesticide.

A student carried out a titration with sodium hydroxide solution to determine the mass of the acid in the solution. The student repeated the titration until concordant titres were obtained.

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{1}$ The student found that $25.0 \mathrm{~cm}^{3}$ of the ethanedioic acid solution reacted |
| :--- | :--- | :--- | completely with $25.30 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.

Calculate the mass, in mg , of the acid in $25.0 \mathrm{~cm}^{3}$ of this solution.
[4 marks]
\qquad mg

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{2}$ The student used a wash bottle containing deionised water when approaching the |
| :--- | :--- | :--- | :--- | end-point to rinse the inside of the conical flask.

Explain why this improved the accuracy of the titration.
[1 mark]
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{3}$ Give the meaning of the term concordant titres. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad

Question	Marking Guidance	Mark	Comments
05.1	M1 Amount $\mathrm{NaOH}=0.02530 \times 0.500=0.01265 \mathrm{~mol}$ M2 Amount acid $=0.006325 \mathrm{~mol}$ (i.e. $\mathrm{M} 1 \div 2$) M3 $\quad M_{r}=90(.0)$ M4 mass acid = 569 (mg) (allow 567 to 576) (i.e. M2 \times M3 in mg)	1 1 1 1	567-590 = 4 marks $0.567-0.590=3$ marks Allow ECF at each stage M3 can be scored from use of value of $90(.0)$ within working M4 should be to at least 2sf. Any individual marks for M1/2/3 should be to at least 2sf (or 90 for M3) 1134-1180 $=3$ marks (due to not dividing moles of NaOH by 2) $1.134-1.180=2$ marks (due to not dividing moles of NaOH by 2 and not converting to mg)

05.2 Idea that it ensures all ethanedioic acid / acid / sodium hydroxide / alkali / reactants are in the mixture / solution / reaction or the idea that some of the ethanedioic acid / acid / sodium hydroxide / alkali / reactants would be on the sides of the flask

Units are needed
Allow $0.05-0.15 \mathrm{~cm}^{3}$
Do not allow idea of identical results
Allow answers that refer to titres that are within the uncertainty of the burette/apparatus of each other

| $\mathbf{0}$ | 2 |
| :--- | :--- | Citric acid, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}(\mathrm{COOH})_{3}$, occurs naturally in many fruits and can also be synthesised in the laboratory for use as a food flavouring. A student analysed a sample of citric acid to determine its percentage purity.

The student dissolved 784 mg of impure citric acid in water to prepare $250 \mathrm{~cm}^{3}$ of solution in a volumetric flask.

The student titrated $25.0 \mathrm{~cm}^{3}$ samples of this solution with $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution using phenolphthalein as the indicator.

$$
\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}(\mathrm{COOH})_{3}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}(\mathrm{COO})_{3} \mathrm{Na}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ The student rinsed the burette before filling it with the sodium hydroxide solution. |
| :--- | :--- | :--- | :--- |

State why the student should use sodium hydroxide solution rather than water for the final rinse of the burette.
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ The student carried out several titrations. The results are shown in Table 2.

Complete Table 2 to show the titre in each titration.

Table 2

Titration	Rough	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final reading $/ \mathrm{cm}^{3}$	25.2	23.95	47.65	24.10
Start reading $/ \mathrm{cm}^{3}$	0.0	0.05	23.95	0.10
Titre $/ \mathrm{cm}^{3}$				

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Calculate the mean titre using the concordant results. |
| :--- | :--- | :--- | :--- |

Give your answer to the appropriate number of significant figures.

| $\mathbf{0}$ | $\mathbf{2} .4$ The total uncertainty when using the burette is $\pm 0.15 \mathrm{~cm}^{3}$. This is the combination of |
| :--- | :--- | :--- | uncertainties in the start reading, final reading and the determination of the end point.

Use your answer to Question 02.3 to calculate the percentage uncertainty for the use of the burette in this experiment.

| 0 | 2 | 5 | Use your answer to Question 02.3 to find the mass, in mg , of citric acid dissolved in |
| :--- | :--- | :--- | :--- | $250 \mathrm{~cm}^{3}$ of the solution. The relative molecular mass $\left(M_{r}\right)$ of citric acid is 192.0

\qquad \%

Question	Marking Guidance	Mark	Comments
2.1	use of water would dilute the NaOH OR use of water would change the concentration of NaOH OR to ensure the concentration of the NaOH is not changed OR	1	Ignore reference to weakening the solution, watering down the solution, contaminate Allow it would gives a titre value that is larger it would decrease the pH of the NaOH (any additional qualifying reason given must be correct)
2.2	Rough $=25.2,1=23.90,2=23.70,3=24.00$	1	Need all four (with rough to 1dp and the other three to 2dp)
2.3	M1 use of titrations $1 \& 3$ only M2 $\quad 23.95\left(\mathrm{~cm}^{3}\right)$		M1 is for choosing correct titres M2 is for calculating the mean to 2dp for their chosen titres $24.0 \mathrm{~cm}^{3}=1$ mark (wrong number of decimal places) $24 \mathrm{~cm}^{3}=1$ mark (only if it is clear that titration 2 is not included) $23.86 \mathrm{~cm}^{3}=1$ mark (used all three titrations) $23.9 \mathrm{~cm}^{3}=0$ marks (used all three titrations and wrong number of decimal places) If error(s) made in 2.2, allow ECF from 2.2, where they choose concordant titres and find the mean (can score M1 and M2)
2.4	$\left(\frac{0.15}{23.95} \times 100\right)=0.63 \%$	1	(0.6263\%) Allow any correct value with at least 2 significant figures based on their answer to 2.3. Rounding must be correct.

2.5	M1 moles $\mathrm{NaOH}=\frac{23.95}{1000} \times 0.0500(=0.001198)$ M2 moles acid in flask $=\frac{M 1}{3} \times 10(=0.003992)$ M3 mass acid $(=0.003992 \times 192.0=0.766 \mathrm{~g})=766(\mathrm{mg})$	1 1 1	Correct answer to at least $2 \mathrm{sf}=3$ marks (allow 760-770 mg) Correct value in grams (lose M3) $=2$ marks (allow 0.76-0.77 g) Allow ECF at each stage (including those based on value from 2.3) Incorrect answers that are a factor of 10 too small lose M2 ($76-77 \mathrm{mg}=2$ marks, $0.076-0.077 \mathrm{~g}=1$ mark) (if use $25 \mathrm{~cm}^{3}$ for volume of NaOH , then max 2 marks (M2 and M3 for 800 mg)

Allow any correct value to at least 2 significant figures based on their answer to Q02.5 (values may be over 100% if 2.5 is incorrect)

| $\mathbf{0}$ | $\mathbf{8}$ | A student is provided with a 5.60 g sample of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ contaminated |
| :--- | :--- | :--- | with sodium ethanoate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$.

The student dissolves the sample in deionised water and makes the volume up to $200 \mathrm{~cm}^{3}$

The student removes $25.0 \mathrm{~cm}^{3}$ samples of the solution and titrates them with $0.350 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.

Table 3 shows the results of these titrations.
Table 3

	Rough	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final volume $/ \mathrm{cm}^{3}$	20.85	41.10	20.50	40.80
Initial volume $/ \mathrm{cm}^{3}$	0.00	20.85	0.00	20.50
Titre $/ \mathrm{cm}^{3}$	20.85	20.25	20.50	20.30

0	8	1	Use the results in Table 3 to calculate the mean titre value.

Use the mean titre to calculate the percentage by mass of sodium ethanoate in the original sample.

Mean titre value cm^{3}

Percentage by mass

\qquad

| $\mathbf{0}$ | $\mathbf{8}$ | .2 |
| :--- | :--- | :--- | The student rinses the burette with deionised water before filling with sodium hydroxide solution.

State and explain the effect, if any, that this rinsing will have on the value of the titre.
[2 marks]
\qquad
\qquad
\qquad

Turn over for the next question

Question	Marking guidance	Additional Comments/Guidelines	Mark
08.1	M1: Mean titre $=\frac{20.25+20.30}{2}=20.275 \mathrm{~cm}^{3}$ M2 Amount of $\mathrm{NaOH}=0.35 \times(20.275 \div 1000)$ $=0.00709625 \mathrm{~mol}$ Amount of ethanoic acid in $25 \mathrm{~cm}^{3}=0.00709625 \mathrm{~mol}$ M3 Amount of ethanoic acid in $200 \mathrm{~cm}^{3}=0.05677 \mathrm{~mol}$ M4 Mass of ethanoic acid in sample $=60.0 \times 0.05677$ $=3.4062 \mathrm{~g}$ $\begin{aligned} \text { M5 Mass of sodium ethanoate }=5.6 & -3.4062 \\ & =2.1938 \mathrm{~g} \end{aligned}$ $\text { M6 percentage } \mathrm{CH}_{3} \mathrm{COONa}=(2.1938 \div 5.6) \times 100$ $=39.1 \%$	Allow M1 $=20.28 \mathrm{~cm}^{3}$ $\mathrm{M} 2=\mathrm{M} 1 \times 10^{-3} \times 0.35$ $\mathrm{M} 3=\mathrm{M} 2 \times 8$ $\mathrm{M} 4=\mathrm{M} 3 \times 60.0$ $\begin{aligned} & \text { M5 }=5.6-\text { M4 } \\ & \text { M6 }=(\mathrm{M} 5 \div 5.6) \times 100 \\ & (39.1-39.2) \end{aligned}$ Accept alternative methods $\mathrm{M} 5=(\mathrm{M} 4 \div 5.6) \times 100) \text { followed by } \mathrm{M} 6=100-\mathrm{M} 5$	1 1 1

Question	Marking guidance	Additional Comments/Guidelines	Mark
08.2	M1	Titre value would increase / larger value	
	M2	Because the sodium hydroxide solution would be more dilute	

$\mathbf{0}$	$\mathbf{2}$ This question is about acid-base titrations.

Citric acid reacts with sodium hydroxide.

$$
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

 Describe a method to add an accurately known mass of solid to a beaker to make a solution.
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .2$ | $\mathbf{2}$ The student dissolves 0.834 g of citric acid in water and makes the solution up to |
| :--- | :--- | :--- | $500 \mathrm{~cm}^{3}$

Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of citric acid in this solution.
\qquad $\mathrm{mol} \mathrm{dm}{ }^{-3}$

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{3}$ The student uses this method to complete a titration.

- Rinse a burette with distilled water.
- Fill the burette with sodium hydroxide solution.
- Use a measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of the citric acid solution into a conical flask.
- Add $5 \mathrm{~cm}^{3}$ of indicator.
- Slowly add the sodium hydroxide solution from the burette into the conical flask.
- Add the sodium hydroxide solution dropwise near the end point until the indicator just changes colour.
- Repeat the titration to get concordant results.

The method used by the student includes three practical steps that will lead to an inaccurate final result.

For each of these three steps

- identify the mistake
- explain why it is a mistake
- suggest how the mistake can be overcome.
\qquad

| 0 | 2 | 4 | Table 1 shows the student's burette readings after the mistakes in the practical |
| :--- | :--- | :--- | :--- | procedure have been corrected.

Table 1

	Rough	Run 1	Run 2	Run 3
Final reading $/ \mathbf{c m}^{\mathbf{3}}$	23.65	22.95	46.05	26.30
Start reading $/ \mathbf{c m}^{\mathbf{3}}$	0.00	0.00	22.95	3.40
Titre $/ \mathbf{c m}^{\mathbf{3}}$	23.65			

Complete Table 1.

Use the data in Table 1 to calculate the mean titre.

Mean titre \qquad cm^{3}

$\mathbf{0}$	$\mathbf{2} .5$	$\mathbf{5}$ The total uncertainty in the use of the burette is $\pm 0.15 \mathrm{~cm}^{3} \mathrm{l}$

Calculate the percentage uncertainty in the use of the burette in Run 1.

Question	Marking guidance	Additional Comments/Guidelines	Mark
02.1	M1 measure the mass of the weighing boat (or similar) and solid M2 Add the solid to a beaker (or other suitable container) and then reweigh the weighing boat (and subtract to find the mass of solid added.) OR M1 Place weighing boat on a balance and zero the balance M2 Add the solid to a beaker (or other suitable container), wash out weighing boat and transfer washing to the beaker.	M1 place (an empty) beaker on balance and zero M2 add the solid to the beaker and record the mass OR M1 place (an empty) beaker on balance and measure its mass M2 add the solid to the beaker and subtract mass of empty beaker from the total mass	$\begin{gathered} 1 \\ 1 \\ (2 \times \mathrm{AO} 1) \end{gathered}$

Question		Marking guidance	Additional Comments/Guidelines	Mark
02.2	M1 M2	Mr citric acid $=192.0$		1
		$\begin{aligned} \text { Amount of citric acid } & =\text { Mass } / M_{r} \\ & =0.834 / 192 \\ & =0.0043438(\mathrm{~mol}) \end{aligned}$	M2 conseq on M1	1
	M3	$\begin{aligned} \text { Concentration } & =\text { moles } / \text { volume } \\ & =0.0043438 / 0.5 \\ & =0.00869\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	M3 conseq on M2	$\stackrel{1}{(3 \times \mathrm{AO} 2)}$
			Alternative Method M1 Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=0.834 / 0.50=1.668$ M2 Mr citric acid = 192.0 M3 Concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)=\mathrm{M} 1 / \mathrm{M} 2=0.00869$	

Question	Marking guidance	Additional Comments/Guidelines	Mark

02.4	Calculates the titres for each of 1,2,3 as			Allow 22.9(25) cm^{3}	1
	1	2	3		
	22.95	23.10	22.90		
	Averages concordant titres:$(22.95+22.90) \div 2=22.93 \mathrm{~cm}^{3}$				$\left(\begin{array}{c} 1 \\ (2 \mathrm{AO} 1) \end{array}\right.$

Question	Marking guidance	Additional Comments/Guidelines	Mark
$\mathbf{0 2 . 5}$	$(0.15 / 22.95) \times 100=0.65 \%$	$0.15 /($ Their Run 1$) \times 100$	1

