## A' Level Chemistry <br> Year 1

## Unit 2: AOS PV=nRT

## Summer Examination Revision Pack

The questions in this pack should be attempted AFTER completing all other revision.


Grade Accelerator
Recall Definitions
Drawing Diagrams
Using Equations
Drawing Graphs

Condensed Notes


Keywords \& Definitions
Key Concepts
Application
Key Skills

## Quizlet

Quizlet Classes
Flashcard Based Games
Tests \& Quizzes
Keyword Spell Checker

## Online Forms

Take Time to Answer
Use Paper \& Calculator
Work It Out
Review Missed Marks

Use the $\mathbf{3}$ Wave Process when completing these revision packs.


1. Complete the questions without assistance (Can't answer a question? Leave it and move on)
2. Use your notes to fill any gaps after step 1
3. Use the mark scheme to fill in any remaining gaps.
4. Having gaps after step 1 is normal, that's why we are doing revision!
5. If your notes don't help during step 2, they are not good enough!
(Change your note taking method and try to understand the problem)
6. If you don't understand why the mark scheme answer is correct, see Andy.

STOP If you struggle with the questions in the pack, STOP! and complete some more revision.

STOP If you come to a complete dead-end, STOP! and speak to Andy asap.
$5 \quad$ Figure 2 represents two glass flasks, $\mathbf{P}$ and $\mathbf{Q}$, connected via a tap.
Flask $\mathbf{Q}$ (volume $=1.00 \times 10^{3} \mathrm{~cm}^{3}$ ) is filled with ammonia $\left(\mathrm{NH}_{3}\right)$ at 102 kPa and 300 K . The tap is closed and there is a vacuum in flask $\mathbf{P}$. (Gas constant $\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ )

Figure 2


| $\mathbf{0}$ | 5 | 1 |
| :--- | :--- | :--- |

Give your answer to the appropriate number of significant figures.
[3 marks]
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| 0 | 5 | 2 |
| :--- | :--- | :--- | When the tap is opened, ammonia passes into flask $\mathbf{P}$. The temperature decreases by $5^{\circ} \mathrm{C}$. The final pressure in both flasks is 75.0 kPa .

Calculate the volume, in $\mathrm{cm}^{3}$, of flask $\mathbf{P}$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Turn over for the next question

| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 05.1 | $\mathrm{n}=\mathrm{PV} / \mathrm{RT}$ | 1 | If $\mathrm{PV}=\mathrm{nRT}$ rearranged incorrectly then M3 only |
|  | $\frac{102000 \times\left(1.00 \times 10^{-3}\right)}{8.31 \times 300}=n=\left(4.091456077 \times 10^{-2}\right)$ | 1 |  |
|  | Mass $=\mathrm{M} 2 \times 17=0.696$ (g) (3 sig figs only $)$ | 1 | Allow 0.695 or 0.697 |

05.2 If $\mathrm{pV}=\mathrm{nRT}$

$$
\text { Total volume }=\frac{n R T}{P}
$$

$$
=\frac{n \times 8.31 \times 295}{75000}
$$

$$
=1.34 \times 10^{-3} \mathrm{~m}^{3}
$$

Volume of $Q$ in $\mathrm{m}^{3}=1.00 \times 10^{-3}$
Volume of bulb $\mathrm{P}=1.34 \times 10^{-3}-1.00 \times 10^{-3}$
Volume of bulb $\mathrm{P}=3.42 \times 10^{-4} \mathrm{~m}^{3}$
$=342 \mathrm{~cm}^{3}$ (Allow 310-342 $\mathrm{cm}^{3}$ )

Incorrect unit conversion loses M1 only; can get M2/M3 if possible volume obtained

Inserts correct numbers (inc pressure in Pa )

No subtraction M1 only

Alternative method also worth full credit
(note if mol in M2 of 05.1 rounded to 0.04 this could lead to a final answer of $3.1 \times 10^{-4} \mathrm{~m}^{3}$ so allow range $310-342 \mathrm{~cm}^{3}$

| $\mathbf{0}$ | $\mathbf{6}$ A student determined the relative molecular mass, $M_{\mathrm{r}}$, of an unknown volatile liquid $\mathbf{Y}$ |
| :--- | :--- | :--- | in an experiment as shown in Figure 5.

The student used a hypodermic syringe to inject a sample of liquid $\mathbf{Y}$ into a gas syringe in an oven.
At the temperature of the oven, liquid $\mathbf{Y}$ vaporised.
The student's results are shown in Table 2.
Figure 5


Table 2

| Mass of hypodermic syringe and liquid $\mathbf{Y}$ before injection | 10.91 g |
| :--- | :---: |
| Mass of hypodermic syringe and liquid $\mathbf{Y}$ after injection | 10.70 g |
| Oven temperature | $98.1^{\circ} \mathrm{C}$ |
| Atmospheric pressure | 102 kPa |
| Increase in volume in gas syringe after injection of $\mathbf{Y}$ | $85.0 \mathrm{~cm}^{3}$ |


| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{1}$ Define the term relative molecular mass $\left(M_{\mathrm{r}}\right)$. |
| :--- | :--- | :--- |

Use the experimental results in Table 2 to determine the relative molecular mass of $\mathbf{Y}$. The gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\qquad$

| $\mathbf{0}$ | $\mathbf{6} .2$ Some of the liquid injected did not evaporate because it dripped into the |
| :--- | :--- | :--- | gas syringe nozzle outside the oven.

Explain how this would affect the value of the $M_{r}$ of $\mathbf{Y}$ calculated from the experimental results.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Qu | Marking Guidance | Additional Comments | Mark |
| :---: | :---: | :---: | :---: |
| 6.1 | The sum of (weighted) average masses of atoms in formula <br> $1 / 12$ mass of an atom of ${ }^{12} \mathrm{C}$ <br> Method 1 <br> Mass of $Y=0.21 \mathrm{~g}$ $\begin{aligned} & M_{\mathrm{r}}=\frac{m R T}{p V} \\ & M_{\mathrm{r}}=\frac{0.21 \times 8.31 \times 371.1}{102000 \times 85 \times 10^{-6}} \\ & M_{\mathrm{r}}=74.7 \end{aligned}$ <br> Method 2 <br> Mass of $Y=0.21 \mathrm{~g}$ <br> $\mathrm{n}=\frac{p V}{R T}$ and $M_{\mathrm{r}}=\frac{m}{n}$ <br> $\mathrm{n}=\frac{102000 \times 85 \times 10^{-6}}{8.31 \times 371.1}\left(=2.81 \times 10^{-3}\right)$ <br> $M_{\mathrm{r}}=74.7$ | Average mass of one molecule <br> $1 / 12$ mass of an atom of ${ }^{12} \mathrm{C}$ <br> If incorrect lose M5 also, unless AE <br> Can be implied in calculations <br> M4 - awarded for all 3 unit conversions If incorrect, also lose M5 <br> Allow 75 | 1 1 1 |
| 6.2 | Lower volume recorded <br> $M_{\mathrm{r}}$ would be greater (than the real $M_{\mathrm{r}}$ ) | Allow <br> (Evaporated) mass of gas is less than the recorded mass of liquid $/ 0.21 \mathrm{~g}$ (or converse) <br> Ignore other references to mass | 1 1 |


| $\mathbf{0}$ | $\mathbf{8}$ | This question is about a volatile liquid, $\mathbf{A}$. |
| :--- | :--- | :--- |


| 0 | 8 | 1 |
| :--- | :--- | :--- | A student does an experiment to determine the relative molecular mass $\left(M_{r}\right)$ of liquid $\mathbf{A}$ using the apparatus shown in Figure 2.

The student injects a sample of $\mathbf{A}$ into a gas syringe in an oven.
At the temperature of the oven, liquid $\mathbf{A}$ vaporises.
Figure 2


Table 3 shows the student's results.
Table 3

| Mass of fine needle syringe and contents before injecting | 11.295 g |
| :--- | ---: |
| Mass of fine needle syringe and contents after injecting | 10.835 g |
| Volume reading on gas syringe before injecting | $0.0 \mathrm{~cm}^{3}$ |
| Volume reading on gas syringe after injecting | $178.0 \mathrm{~cm}^{3}$ |
| Pressure of gas in syringe | 100 kPa |
| Temperature of oven | $120^{\circ} \mathrm{C}$ |


Table 3 is repeated here.

| Mass of fine needle syringe and contents before injecting | 11.295 g |
| :--- | :---: |
|  | Mass of fine needle syringe and contents after injecting |
| Volume reading on gas syringe before injecting | 10.835 g |
| Volume reading on gas syringe after injecting | $0.0 \mathrm{~cm}^{3}$ |
| Pressure of gas in syringe | $178.0 \mathrm{~cm}^{3}$ |
| Temperature of oven | 100 kPa |


| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{3}$ Each reading on the balance used to record the mass of the fine needle syringe and |
| :--- | :--- | :--- | contents had an uncertainty of $\pm 0.001 \mathrm{~g}$

Calculate the percentage uncertainty in the mass of liquid $\mathbf{A}$ injected in this experiment.

| Question | Marking guidance | Additional Comments/Guidelines | Mark |
| :---: | :---: | :---: | :---: |
| 08.1 | M1 $\mathrm{n}=\mathrm{pV} / \mathrm{RT}$ <br> M2 $\quad n=\frac{100000 \times(178 / 1000000)}{8.31 \times(273+120)}$ <br> M3 $\begin{aligned} & \mathrm{n}=5.45 \times 10^{-3} \mathrm{~mol} \\ & M_{\mathrm{r}}=\frac{\mathrm{mass}}{} / \mathrm{mol} \text { or } 0.460 / 5.45 \times 10^{-3} \end{aligned}$ <br> M4 $\quad M_{r}=84.4$ Answer must be to 3 sig.fig. | M1 for rearrangement M2 for three unit conversions M3 for calculating the amount in moles of A M4: 0.460 / M3 given to 3sf | 4 |
| 08.2 | Calculated Mr value would be greater than actual <br> A lower volume would have been recorded / mass evaporated less than mass of liquid / lower moles calculated / mass recorded higher than mass of gas / mass recorded would be too high | $\mathrm{Mr}=$ mass / moles so dividing by too small a value of moles gives a larger Mr than expected. <br> M2 dependent on correct M1 | 1 <br> 1 |
| 08.3 | $\begin{aligned} \% \text { uncertainty } & =(\text { uncertainty } / \text { mass added }) \times 100 \\ & =((2 \times 0.001) / 0.460\} \times 100 \\ & =0.435 \% \end{aligned}$ |  | 1 |

An experiment was carried out to determine the relative molecular mass $\left(M_{\mathrm{r}}\right)$ of a volatile hydrocarbon $\mathbf{X}$ that is a liquid at room temperature.

A known mass of $\mathbf{X}$ was vaporised at a known temperature and pressure and the volume of the gas produced was measured in a gas syringe.

Data from this experiment are shown in Table 1.

## Table 1

| Mass of $\mathbf{X}$ | 194 mg |
| :--- | :---: |
| Temperature | 373 K |
| Pressure | 102 kPa |
| Volume | $72 \mathrm{~cm}^{3}$ |


Show your working.
Give your answer to the appropriate number of significant figures.
The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\qquad$

| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 02.1 | Stage 1 $\begin{aligned} & \text { M1 } \quad n=\frac{P V}{R T} \\ & \text { M2 } \quad=\frac{102 \times 10^{3} \times 72 \times 10^{-6}}{8.31 \times 373} \\ & \text { M3 } \\ & \text { M3 }=0.0024 / 0.00237 / 0.002369 / 0.0023693 \end{aligned}$ <br> Stage 2 $\begin{array}{ll} \text { M4 } & M_{r}\left(=\frac{\text { mass }}{\text { moles }}\right)=\frac{0.194}{\text { M3 }} \\ \text { M5 } & =82(2 \text { sf only }) \end{array}$ | 1 <br> 1 <br> 1 <br> 1 <br> 1 | As this is an extended response question, each separate step of correct working is required in M1-M5 <br> Correct answer with no working scores 2 marks <br> M1 - If expression not written out, M1 could score from a correct expression for M2 (even if unit conversions are not correct for M2) <br> M2 - allow an expression that gives correct value for M3 <br> M3 should be at least 2 sf (do not allow 0.0023 but do allow 0.00236) <br> M4 must show 0.194 or $194 \times 10^{-3}$ in working to score <br> M5 must be 2sf <br> ECF: <br> - No ECF within either stage 1 or stage 2 (except for transcription errors) <br> - Allow ECF from stage 1 into stage 2, i.e for M4 and M5 based on incorrect M3, (but if expression for M4 is inverted, cannot score M5) <br> - (Note that if $72 \times 10^{-3}$ used in M2, then $\mathbf{M} 3=2.4, \mathbf{M} 5=0.082$ ) <br> Ignore units for M3 and M5 <br> Note that if $\mathrm{T}=273+373=646, \mathbf{M 5}=140(2 \mathrm{sf})$ |


| 0 | 9 | 3 |
| :--- | :--- | :--- |

During its use, the butane is repeatedly converted from liquid to gas and then back to liquid. Liquid butane expands as it turns into a gas.

- Calculate the volume, in $\mathrm{cm}^{3}$, of 38.8 g of butane gas at 272 K and 101 kPa (the gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ ) ( $M_{\mathrm{r}}$ of butane $=58.0$ )
- Calculate the volume, in $\mathrm{cm}^{3}$, of 38.8 g of liquid butane.
(density of liquid butane $=0.60 \mathrm{~g} \mathrm{~cm}^{-3}$ )
- Use your answers to calculate the factor by which butane expands in volume when it changes from a liquid to a gas.

Show your working.

| Question | Marking guidance | Additional Comments/Guidelines | Mark |
| :---: | :---: | :---: | :---: |
| 09.3 | Volume as a gas: <br> M1 moles butane $=\frac{38.8}{58.0}(=0.669)$ <br> M2 $\quad V=\frac{n R T}{P}$ <br> M3 $\quad V=\frac{0.669 \times 8.31 \times 272}{101000}$ <br> M4 $\quad\left(=0.0150 \mathrm{~m}^{3}\right)=15000\left(\mathrm{~cm}^{3}\right)$ <br> (14971) <br> Volume as a liquid: <br> M5 $\quad V=\frac{38.8}{0.60}=65$ or 64.7 or $64.666 \ldots\left(\mathrm{~cm}^{3}\right)$ <br> Expansion factor <br> M6 $\left(\frac{M 4}{M 5}\right)=\left(\frac{15000}{64.7}\right)=232$ (allow $\left.230-232\right)$ | Answers to M4, M5 and M6 should be 2sf or more <br> M1-M4 $15000\left(\mathrm{~cm}^{3}\right) \quad$ (14971) scores M1-M4 <br> M1 may score from a value or expression within M3 <br> M2 could score from an attempt at M3 that shows attempts at values for $n, R, T$ and $P$ in suitable places <br> M4 ignore additional answers following this in other units (if incorrect it will be penalised in M6) <br> Allow ECF in M3 and M4 based on incorrect moles of butane from M1; allow ECF in M4 based on incorrect units in M3 <br> Allow ECF in M3 and M4 based on inverted expression for volume $V=\frac{P}{n R T}$; for other incorrect expressions, allow a maximum of one mark for M3 or M4 for correct unit conversion for P to Pa in M3 or volume to $\mathrm{cm}^{3}$ in M4 <br> M5 <br> ignore additional answers following this in other units (if incorrect it will be penalised in M6) <br> $64.6\left(\mathrm{~cm}^{3}\right)$ is outside range and does not score M5 <br> $64.6\left(\mathrm{~cm}^{3}\right)$ (i.e. 66.6 dot scores M5) <br> M6 <br> allow ECF based on values for M4 and M5 | 1 1 1 1 1 1 1 1 |


| $\mathbf{0}$ | $\mathbf{2} \quad$ A student investigates two experimental methods of making methylpropanal. |
| :--- | :--- | :--- | The equations for these two methods are shown.

## Method 1



## Method 2



$$
M_{r}=74.0
$$

$$
M_{\mathrm{r}}=72.0
$$

In each method, the student uses 1.00 g of organic starting material.
The yield of methylpropanal obtained using each method and other data are included in Table 3.

Table 3

|  | Method 1 | Method 2 |
| :--- | :---: | :---: |
| Yield of methylpropanal / mg | 552 | 778 |
| Percentage yield |  | $80.0 \%$ |
| Percentage atom economy | $62.1 \%$ |  |

Calculate the percentage yield for Method 1.
Calculate the percentage atom economy for Method 2.
State the importance of percentage yield and percentage atom economy when choosing the method used to make a compound.

## \% yield

Importance of percentage yield $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
\% atom economy

Importance of percentage atom economy
$\qquad$
$\qquad$
$\qquad$

| Question | Marking guidance | Additional Comments/Guidelines | Mark |
| :--- | :--- | :--- | :--- |


| 03 | Percentage yield | Correct M3 scores M1-3 <br> Numerical answers to at least 2sf |  |
| :---: | :---: | :---: | :---: |
|  | M1 reactant moles $=\frac{1.00}{116.0} \quad(=0.00862)$ |  | 1 |
|  | M2 product moles $=\frac{0.552}{72.0} \quad(=0.00767)$ | Allow ECF in M1-M3 |  |
|  | M3 \% yield $=\left(\frac{0.00767}{0.00862} \times 100\right)=88.9(3)$ or $89 \%$ | Alternative for M2/3 | 1 |
|  | M4 idea of getting as much product as possible in the reaction / idea of efficient conversion of reactants to products <br> Atom economy | $\begin{array}{ll} \text { M2 } & \text { expected mass of product }=\begin{array}{r} 0.00862 \times 72.0 \\ (=0.621 \mathrm{~g}) \end{array} \\ \text { M3 } & \% \text { yield }=\left(\frac{0.552}{0.621} \times 100\right)=88.9(3) \text { or } 89 \% \end{array}$ | 1 |
|  | M5 $\quad\left(\frac{72.0}{74.0+34.0} \times 100\right)=\left(\frac{72.0}{108.0} \times 100\right)=66.7 \%$ | Alternative for M5: $\left(\frac{72.0}{72.0+36.0} \times 100\right)$ | 1 |
|  | M6 idea of maximising the mass of reactants / atoms that ends up in desired product or <br> idea of minimising the amount of by-products |  | 1 |


| $\mathbf{0}$ | $\mathbf{6} \quad$ This question is about two experiments on gases. |
| :--- | :--- | :--- |


| 0 | 6 | 1 |
| :--- | :--- | :--- |
| 1 |  |  | The liquid vaporises in the flask.

Table 2 shows data for this experiment.
Table 2

| Mass of $\mathbf{Y}$ | 717 mg |
| :--- | :--- |
| Temperature | 297 K |
| Volume of flask | $482 \mathrm{~cm}^{3}$ |
| Pressure inside flask | 51.0 kPa |

Calculate the relative molecular mass of $\mathbf{Y}$.
Show your working.
The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

| Question | Marking guidance | Additional Comments/Guidelines | Mark |
| :---: | :---: | :---: | :---: |
| 06.1 | METHOD 1 <br> Stage 1 <br> M1 $n=\frac{P V}{R T}$ <br> M2 converting P to $51.0 \times 10^{3}$, V to $482 \times 10^{-6}$ <br> M3 $=\frac{51.0 \times 10^{3} \times 482 \times 10^{-6}}{8.31 \times 297}(=0.00996)$ <br> Stage 2 <br> M4 converting mass to 0.717 <br> M5 $\quad M_{r}\left(=\frac{\text { mass }}{\text { moles }}\right)=\frac{\mathbf{M 4}}{\mathbf{M 3}}=72.0 \quad$ (at least 2 sf ) <br> METHOD 2 <br> M1 $n=\frac{P V}{R T}$ <br> M2 $\quad M_{r}=\frac{m R T}{P V}$ <br> M3 converting $P$ to $51.0 \times 10^{3}$, $V$ to $482 \times 10^{-6}$ <br> M4 converting mass to 0.717 <br> M5 $\quad M_{r}=\left(\frac{0.717 \times 8.31 \times 297}{51.0 \times 10^{3} \times 482 \times 10^{-6}}\right)=72.0 \quad$ (at least 2 sf ) | Both methods: <br> 72.0 can be achieved with incorrect working and may not score because individual steps need to be assessed as correct <br> 72.0 with no working scores no marks <br> If expression not written out, M1 could score from a substituted correct expression later on (even if any unit conversions are incorrect) <br> METHOD 1 <br> - ECF from M2 to M3 <br> - ECF from M3 to M4 <br> - ECF from M4 to M5 <br> - Ignore units for M3 <br> METHOD 2 <br> - ECF from M3 to M4 <br> - ECF from M2 to M4 <br> - ECF from M4 to M5 | 1 <br> 1 <br> 1 <br> 1 <br> 1 |


| 0 | 4 |
| :--- | :--- | This question is about gas volumes.

$\begin{array}{lll}\mathbf{0} & \mathbf{4} . & \mathbf{1} \text { TNT }\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \text { is an explosive because it can decompose very quickly and }\end{array}$ exothermically to form a large volume of gas. An equation for this decomposition is

$$
2 \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{H}_{2}(\mathrm{~g})+12 \mathrm{CO}(\mathrm{~g})+2 \mathrm{C}(\mathrm{~s})
$$

Calculate the volume of gas, in $\mathrm{m}^{3}$, measured at $1250{ }^{\circ} \mathrm{C}$ and 101000 Pa , produced by the decomposition of 1.00 kg of TNT ( $M_{\mathrm{r}}=227.0$ ).

The gas constant, $R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2}$ | Alkenes have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$ |
| :--- | :--- | :--- | :--- |

When alkenes undergo complete combustion, 1.0 mol of $\mathrm{C}_{n} \mathrm{H}_{2 n}$ reacts with $\frac{3 n}{2}$ mol of oxygen.

Calculate the volume of oxygen needed for the complete combustion of $200 \mathrm{~cm}^{3}$ of but-1-ene.

The volumes of all gases are measured at the same temperature and pressure.

Volume of oxygen $\qquad$ $\mathrm{cm}^{3}$
$\begin{array}{llll}0 & 4 & 3 & \text { Alkanes have the general formula } \mathrm{C}_{n} \mathrm{H}_{2 n+2}\end{array}$
Alkanes undergo complete combustion in a plentiful supply of oxygen.

$$
\mathrm{C}_{n} \mathrm{H}_{2 n+2}+x \mathrm{O}_{2} \rightarrow n \mathrm{CO}_{2}+(n+1) \mathrm{H}_{2} \mathrm{O}
$$

Determine $x$ in terms of $n$

## Turn over for the next question

| Question | Marking guidance | Additional Comments/Guidelines | Mark |
| :---: | :---: | :---: | :---: |
| 04.1 | M1 amount of TNT $=\frac{1000}{227.0}(=4.41 \mathrm{~mol})$ <br> M2 amount of gases formed $=10 \times$ M1 ( $=44.1 \mathrm{~mol})$ <br> M3 $\quad V=\frac{n R T}{P}$ <br> M4 converting T to 1523 (K) (or $273+1250$ ) <br> M5 $\quad \mathbf{V}=\frac{\mathrm{M} 2 \times 8.31 \times 1523}{101000}=5.52\left(\mathrm{~m}^{3}\right) \quad$ range $5.5(1)$ to $5.53\left(\mathrm{~m}^{3}\right)$ | Final answer should be at least 2sf <br> Correct final answer scores 5 marks <br> Allow ECF from M1 to M2, M2 to M5, M4 to M5 and M3 to M5 <br> $0.552\left(\mathrm{~m}^{3}\right)$ for using 4.41 mol in $\mathbf{M} 5$ scores 4 marks (loses M2) <br> $4.54\left(\mathrm{~m}^{3}\right)$ for using 1250 K scores 4 marks (loses M4); <br> $3.54\left(\mathrm{~m}^{3}\right)$ for using ( $1250-273$ ) K scores 4 marks (loses M4); <br> $0.18\left(\mathrm{~m}^{3}\right)$ for inverted expression scores 4 marks (loses M3 or M5) <br> M3 can score from a substituted expression | 1 1 1 1 1 1 $(1 \times \mathrm{AO} 1$, $4 \times \mathrm{AO} 2)$ |


| Question | Marking guidance | Additional Comments/Guidelines | Mark |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 4 . 2}$ | $1200\left(\mathrm{~cm}^{3}\right)$ | $200 \times \frac{3 \mathrm{n}}{2} \quad$ where $\mathrm{n}=4 \quad 200 \times \frac{12}{2}$ | 1 |


| Question | Marking guidance | Additional Comments/Guidelines | Mark |
| :---: | :---: | :--- | :---: |
| 04.3 | $\frac{3 n+1}{2}$ | $1.5 n+0.5$ | 1 |

