Unit 12 Rates & Kp (Paper 1 & 3)

12.1 Rate equations

Rate equations

The rate of a chemical reaction is related to the concentration of reactants by a rate equation of the form: Rate = $k[A]^m[B]^n$

where m and n are the orders of reaction with respect to reactants A and B and k is the rate constant.

The orders m and n are restricted to the values 0, 1, and 2.

The rate constant k varies with temperature as shown by the equation: $\mathbf{k} = \mathbf{A} \mathbf{e}^{-\mathbf{E}} \mathbf{a}^{/RT}$ where A is a constant, known as the Arrhenius constant,

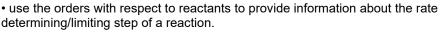
E a is the activation energy and T is the temperature in K.

You should be able to:

- · define the terms order of reaction and rate constant
- perform calculations using the rate equation
- explain the qualitative effect of changes in temperature on the rate constant k
- perform calculations using the equation k = Ae -E a /RT

Determination of rate equation

The rate equation is an experimentally determined relationship.


The orders with respect to reactants can provide information about the mechanism of a reaction.

You should be able to:

- use concentration-time graphs to deduce the rate of a reaction
- use initial concentration–time data to deduce the initial rate of a reaction

- use rate-concentration data or graphs to deduce the order (0, 1 or 2) with respect to a reactant
- derive the rate equation for a reaction from the orders with respect to each of the reactants

12.2 Equilibrium constant Kp for homogeneous systems

The equilibrium constant K_{p} is deduced from the equation for a reversible reaction occurring in the gas phase.

 K_{p} is the equilibrium constant calculated from partial pressures for a system at constant temperature.

You should be able to:

- derive partial pressure from mole fraction and total pressure
- construct an expression for K_p for a homogeneous system in equilibrium
- perform calculations involving K_p
- predict the qualitative effects of changes in temperature and pressure on the position of equilibrium
- predict the qualitative effects of changes in temperature on the value of Kp
- understand that, whilst a catalyst can affect the rate of attainment of an equilibrium, it does not affect the value of the equilibrium constant.

